www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Unterräume
Unterräume < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:48 Do 10.12.2009
Autor: Reen1205

Aufgabe
Wie ist [mm]a\in \IR[/mm] zu wählen, so dass [mm] [mm] U=\left\{\vec x = \left(1,a\right)^T + t*\left(-1,2\right)^T: t\in\IR\right\} [/mm] ein Unterraum von [mm] \IR^2[/mm] ist? Weisen Sie für ein entsprechendes a nach, das U die Kriterien für Unterräume erfüllt. Wieviele a gibt es, so dass U Unterraum ist?

Ich habe diese Frage in keinem anderen Forum gestellt.

Wir sollen diese Aufgabe ausschließlich mit den Kriterien lösen. Ich stocke allerdings schon beim ersten Kriterium:

[mm]\vec v, \vec w \in U[/mm]

[mm]\vec v = \left(1,a\right)^T + t_1*\left(-1,2\right)^T, \vec w = \left(1,a\right)^T + t_2*\left(-1,2\right)^T; \vec v + \vec w = \left(1,a\right)^T + t_1*\left(-1,2\right)^T + = \left(1,a\right)^T + t_2*\left(-1,2\right)^T[/mm]

Was habe ich denn jetzt davon? Wenn ich das jetzt ausrechne habe ich ja [mm]\left(2,2a\right)^T+t_1\left(-1,2\right)^T+t_2*\left(-1,2\right)[/mm]

Über einen kleinen Tip wäre ich sehr dankbar. VL ist es ja auch ein Rechenfehler, soll ja auch vorkommen ;)

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Do 10.12.2009
Autor: fred97


> Wie ist [mm]a\in \IR[/mm] zu wählen, so dass [mm][mm]U=\left\{\vec x = \left(1,a\right)^T + t*\left(-1,2\right)^T: t\in\IR\right\}[/mm] ein Unterraum von [mm]\IR^2[/mm] ist? Weisen Sie für ein entsprechendes a nach, das U die Kriterien für Unterräume erfüllt. Wieviele a gibt es, so dass U Unterraum ist?
> Ich habe diese Frage in keinem anderen Forum gestellt.

> Wir sollen diese Aufgabe ausschließlich mit den Kriterien lösen. Ich stocke > > allerdings schon beim ersten Kriterium:

> [mm]\vec v, \vec w \in U[/mm]

>[mm]\vec v = \left(1,a\right)^T + t_1*\left(-1,2\right)^T, \vec w = >\left(1,a\right)^T + t_2*\left(-1,2\right)^T; \vec v + \vec w = > \left(1,a\right)^T + t_1*\left(-1,2\right)^T + = \left(1,a\right)^T + > t_2*\left(-1,2\right)^T[/mm]

> Was habe ich denn jetzt davon? Wenn ich das jetzt ausrechne habe ich ja > [mm]\left(2,2a\right)^T+t_1\left(-1,2\right)^T+t_2*\left(-1,2\right)[/mm]

> Über einen kleinen Tip wäre ich sehr dankbar.




Tipp: Obiges U stellt eine Gerade im [mm] \IR^2 [/mm] dar. Damit ist U genau dann ein Unterraum, wenn diese Gerade durch den Ursprung geht.

Der Parameter a ist also so zu bestimmen, dass [mm] $(0,0)^T \in [/mm] U$

FRED




> VL ist es ja auch ein Rechenfehler, soll ja auch vorkommen ;)





Bezug
                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Do 10.12.2009
Autor: Reen1205

Also [mm]\left(0,0\right)^T=\left(1,a\right)^T+t\left(-1,2\right)^T[/mm]

womit ich dann 2 gleichungen habe, von welcher eine das ergebnis [mm] a = -2t[/mm] liefert? Also muss a = -2t sein, damit es ein Unterraum ist?

Bezug
                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Do 10.12.2009
Autor: fred97


> Also
> [mm]\left(0,0\right)^T=\left(1,a\right)^T+t\left(-1,2\right)^T[/mm]
>  
> womit ich dann 2 gleichungen habe, von welcher eine das
> ergebnis [mm]a = -2t[/mm] liefert? Also muss a = -2t sein, damit es
> ein Unterraum ist?

Nein. Was hast Du mit der anderen der 2 Gleichungen gemacht ? Hast Du die einfach so in die Mülltonne getreten ?

Du bekommst die beiden Gleichungen

                [mm]1 = t[/mm]
und
               [mm]a = -2t[/mm]

Was erhälst Du nun für a ?

FRED

Bezug
                                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Do 10.12.2009
Autor: Reen1205

[mm]a = -2[/mm] bekomme ich dann raus.

Im nächsten Schritt hätte ich dann ja die beiden vorausgegangen Vektoren [mm] \vec v = \left(1,-2\right)^T + t_1(-1,2)^T[/mm] und [mm]\vec w = \left(1,-2\right)^T + t_2\left(1,-2\right)^T[/mm] und die Summe aus den beiden bringt mir dann [mm] \left(2,-4\right)^T+\left(t_1+t_2)*\left(-1,2\right)^T[/mm] kann ich jetzt einfach eine 2 aus dem Ortsvektor noch ausklammern und habe damit dann gezeigt, dass es ein Unterraum ist zumindest nach der ersten Bedingung?

Bezug
                                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Do 10.12.2009
Autor: fred97

a=-2 ist richtig. Nun überlege Dir, dass gilt:

              $U = [mm] \{s*(1,-2)^T: s \in \IR \}$ [/mm]

Jetzt kannst Du sehr einfach die Unterraum bedingungen nachprüfen

FRED

Bezug
                                                
Bezug
Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Do 10.12.2009
Autor: Reen1205


Bezug
                                                        
Bezug
Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Do 10.12.2009
Autor: Reen1205


Bezug
                                                        
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Do 10.12.2009
Autor: Reen1205

Der Groschen ist gefallen!

> [mm]U = \{s*(1,-2)^T: s \in \IR \}[/mm]

Das gilt ganz einfach deswegen, weil ich ja soeben gezeigt habe, dass die gerade durch [mm] \left(0,0\right)^T[/mm] geht und damit brauche ich ja den Ortsvektor nicht mehr (also der ortsvektor ist dann [mm]\left(0,0\right)^T[/mm] )
Mit den beiden Vektoren dann flux eingesetzt ergibt sich
[mm]\vec v = s_1*\left(1,-2\right)^T[/mm] und [mm]\vec w = s_2*\left(1,-2\right)^T[/mm] und damit dann [mm]\vec v + \vec w= \left(s_1+s_2\right) * (-1,2)^T[/mm] womit dann ja gezeigt ist, dass es im Unterraum liegt.
Und es gibt nur ein "a" also die "-2" für die das gilt!

Bezug
                                                                
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Do 10.12.2009
Autor: fred97


> Der Groschen ist gefallen!
>  
> > [mm]U = \{s*(1,-2)^T: s \in \IR \}[/mm]
>  
> Das gilt ganz einfach deswegen, weil ich ja soeben gezeigt
> habe, dass die gerade durch [mm]\left(0,0\right)^T[/mm] geht und
> damit brauche ich ja den Ortsvektor nicht mehr (also der
> ortsvektor ist dann [mm]\left(0,0\right)^T[/mm] )
>  Mit den beiden Vektoren dann flux eingesetzt ergibt sich
>  [mm]\vec v = s_1*\left(1,-2\right)^T[/mm] und [mm]\vec w = s_2*\left(1,-2\right)^T[/mm]
> und damit dann [mm]\vec v + \vec w= \left(s_1+s_2\right) * (-1,2)^T[/mm]
> womit dann ja gezeigt ist, dass es im Unterraum liegt.




Du mußt noch zeigen: mit [mm] \vec{v} [/mm] liegt auch $ [mm] \alpha*\vec{v}$ [/mm] in U

FRED


>  Und es gibt nur ein "a" also die "-2" für die das gilt!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de