www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Untersuchung Gauß. Zahleneb.
Untersuchung Gauß. Zahleneb. < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung Gauß. Zahleneb.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 18.02.2012
Autor: chatter007

Aufgabe
Untersuche folgenden Teilbereich der Gaußschen Zahlenebene und verdeutliche das Ganze auch auf dieser!


Hallo,

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt [http://www.onlinemathe.de/forum/Teilbereich-der-Gaussschen-Zahlenebene]

Ich muss in Mathe eine Facharbeit schreiben, obwohl ich eigentlich das Fach gar nicht wollte.., aber egal

Ich muss folgenden Teilbereich der komplexen Zahlen untersuchen:
{z∈ℂ∣∣ [mm] |Re(z^2)| [/mm] <2}

Mein Ansatz:
|Re((a+bi)*(a+bi))| = [mm] |Re(a^2+2abi-b^2)| [/mm]

Wie geht es nun weiter? Ich weiß das ich Re erst wegbekommen muss und das [mm] |z|=sqrt(a^2+b^2) [/mm] gilt!

Gruß und Danke,
ToPPlayer

        
Bezug
Untersuchung Gauß. Zahleneb.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Sa 18.02.2012
Autor: leduart

Hallo
was der Realteil von [mm] a^2-b^2+i*2ab [/mm] ist solltest du wissen.
wenn du x,y statt a,b schreibst ist es dir vielleicht gewohnter und du siehst direkt, was das für eine Menge ist.
sind dir in der ebene Ellipse, Parabel, Hyperbelgleichungen bekann?
Gruss leduart

Bezug
                
Bezug
Untersuchung Gauß. Zahleneb.: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Sa 18.02.2012
Autor: chatter007

Hallo,

Der Realteil von [mm] x^2 [/mm] + 2xyi - [mm] y^2 [/mm] müsste [mm] x^2 [/mm] - [mm] y^2 [/mm] sein!
Und nun? Das mit der Hyperbel sagt mir jetzt leider zur Zeit gar nichts. Generell hab ich auch mit komplexen Zahlen nie was zu tun gehabt, da ich dies ja nur für die Facharbeit brauch.
Parabel Gleichung sagt mir was: y = [mm] ax^2 [/mm] + bx + c

Bezug
                
Bezug
Untersuchung Gauß. Zahleneb.: (Weitere) Hilfe
Status: (Frage) beantwortet Status 
Datum: 18:01 Sa 18.02.2012
Autor: chatter007

Ich hatte nun das Re = [mm] a^2-b^2 [/mm] ist und Im = 2ab

Ich brauche ja nur den Realteil, also [mm] |a^2-b^2| [/mm] < 2
Wenn ich das ganze mal als x und y schreibe:
[mm] x^2 [/mm] - [mm] y^2 [/mm] <2
Es hat, da es mit dem Betrag zu tun hat, also mit der Hyperbel zu tun, aber woher weiß ich wie ich sie darstellen soll

Bezug
                        
Bezug
Untersuchung Gauß. Zahleneb.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Sa 18.02.2012
Autor: leduart

Hallo
du hast  wegen des Betrags  die 2 Ungleichungen
[mm] x^2-y^2<2 [/mm]  falls [mm] x^2-y^2>0 [/mm] und
[mm] y^2-x^2<2 [/mm]  falls [mm] y^2-x^2>0 [/mm]
jetzt zechne die zugehörigen Kurven, für [mm] x^2-y^2=2 [/mm]  also [mm] y^2=2-x^2 [/mm]  z.Bsp indem du für x punkte einsetzt und y ausrechnest , entsprechen die zweite kurve. dann musst du nur noch entscheiden, wo die punkte mit den < liegen.
Wenn ihr hyperbeln nicht durchgenommen habt, lass dir die kurven mit einem Programm z.B geogebra (frei zu haben) zeichnen. aber auch ein paar eingesetzte Punkte, x=0, [mm] \pm1, \pm [/mm] 2,.. tun es  wegen dem Quadrat hast du ja immer gleich 2 Werte für x und dann für y auch.
Und lass deine tolle Laune über  die Facharbeit nicht an uns aus. Ganz unschuldig bist du wohl nicht daran gekommen! Sei froh, dass dir schon auf der Schule zugetraut wird, dass du was selbst erarbeitest, das dir nicht endlos von Lehrern vorgekaut  wurde! Also sieh es als Herausforderung und Chance an .  Wenn du je  studieren willst, auch nicht mathe, wird vom 1. ten Semester  an erwartet, dass du dir  selbst Dinge erarbeitest.( auch im Berufsleben!)
Gruss leduart

Gruss leduart

Bezug
        
Bezug
Untersuchung Gauß. Zahleneb.: Unart!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 So 19.02.2012
Autor: Loddar

Hallo Chatter!


Was soll denn diese Unart, nach Erhalt der Antworten hier seine Fragen unkenntlich zu machen? [motz]
Das zeugt doch von einer gewissen Portion Egoismus.

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de