www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraeume
Untervektorraeume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraeume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Di 12.11.2013
Autor: moniponi

Aufgabe
Seien V ein Vektorraum und U1,U2,W unterraeume von V
Beweise oder widerlege:

U1+W=U2+W => U1=U2

die aufgabe erscheint mir so simpel, denn fuer mich ist es total offensichtlich, dass U1=U2
allerdings kann ich mir nicht vorstellen, dass die loesung so einfach sein soll. Kann mir vielleicht jemand erklaeren wie die aufgabe zu verstehen ist?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untervektorraeume: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Di 12.11.2013
Autor: leduart

Hallo
Wenn es nun für mich nicht ganz offensichtlich ist, wie argumentierst du dann? Also musszt du es mir zeigen. Genau das nennt man einen Beweis
Gruss leduart

Bezug
        
Bezug
Untervektorraeume: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Di 12.11.2013
Autor: Marcel

Hallo,

> Seien V ein Vektorraum und U1,U2,W unterraeume von V
> Beweise oder widerlege:
>  
> U1+W=U2+W => U1=U2
>  die aufgabe erscheint mir so simpel, denn fuer mich ist es
> total offensichtlich, dass U1=U2
>  allerdings kann ich mir nicht vorstellen, dass die loesung
> so einfach sein soll.

was ist denn offensichtlich? Du sagst ja noch nichtmal, was offensichtlich
gelten soll. (Oder meinst Du, wenn Du sagst "dass hier offensichtlich [mm] $U_1=U_2$" [/mm]
ist, soll sagen, dass die Folgerung [mm] $U_1+W=U_2+W$ $\Rightarrow$ $U_1=U_2$ [/mm]
wahr ist (unter den gegebenen anderen Voraussetzungen)? Drücke Dich dann
klarer aus, und wirf nicht "Satzbrocken der behaupteteten Aussagen" hin!)

Wenn die Behauptung wahr wäre, so hättest Du zu zeigen:
Aus [mm] $U_1+W=U_2+W$ [/mm] folgt, dass

sowohl

    [mm] $U_1 \subseteq U_2$ [/mm]

als auch
  
    [mm] $U_2 \subseteq U_1$ [/mm]

gelten würde.

Jetzt betrachte mal

    [mm] $V:=\IR^2$ [/mm]

als (üblichen) Vektorraum über [mm] $\IR$ [/mm] mit

    [mm] $W:=\{(x,0): x \in \IR\} \subseteq [/mm] V$ [mm] ($W\,$ [/mm] "ist die [mm] $x\,$-Achse"), [/mm]

und dann

    [mm] $U_1:=\{(0,y): y \in \IR\}$ [/mm] (das "ist die [mm] $y\,$-Achse") [/mm]

und

    [mm] $U_2:=\{(x,x): x \in \IR\}$ [/mm] (die "45° Ursprungsgerade").

Ich behaupte

    [mm] $U_1+W=U_2+W$ ($=V\,.$) [/mm]
Beweis?

Gilt hier [mm] $U_1=U_2$? [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de