www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum
Untervektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:32 Di 29.11.2011
Autor: Jule2

Aufgabe
Welche der folgenden Teilmengen vom [mm] \IR^3 [/mm]  sind Untervektorraume von [mm] \IR^3? [/mm] Gib für alle Teilmengen die ein Untervektorraum sind auch eine Basis an.

a) [mm] U_{3} [/mm] := {(x,y,z) [mm] \varepsilon \IR^3 [/mm] | x=y oder x=z }

b) [mm] U_{4} [/mm] := {(x,y,z) [mm] \varepsilon \IR^3 [/mm] | x=y und x=z }

Hallo liebes Forum,
hab hier zwei Aufgaben und bin mir sehr unsicher ob ich dass so schreiben kann!!

Also zu a) hab ich mir ein Gegenbeispiel überlegt mit 2 Vektoren :

[mm] v_{1} \vektor{1 \\ 1 \\ 2}, v_{2} \vektor{1 \\ 0 \\ 1} [/mm]

Laut Definition muss ja gelten x,y [mm] \varepsilon [/mm] U [mm] \Rightarrow [/mm] x+y [mm] \varepsilon [/mm] U
Wenn ich nun [mm] v_{1}+v_{2} [/mm] rechne bekomme ich [mm] v_{3} \vektor{2 \\ 1 \\ 3} [/mm]
und hier ist [mm] x\not=y [/mm] und [mm] x\not=z [/mm] somit ist [mm] v_{3} \not\varepsilon [/mm] U



So bei Aufgabe b) müsste [mm] U_{4} [/mm] ein Untervektorraum sein

Also prüfe ich zu erst ob (0/0/0) enthalten ist:
Da x=y=z für x =0 eingesetzt (0/0/0) ist in  [mm] U_{4} [/mm]

Jetzt zur Addition:
Da bin ich mir nicht sicher aber da ich ja eigentlich nur x habe dachte ich mir
x+y+z= x+x+x [mm] \varepsilon [/mm] U

Bei der Multiplikation gitl:
[mm] x\varepsilonU [/mm] und [mm] \lambda \varepsilon \IR^3 \Rightarrow x*\lambda \varepsilon [/mm] U
und dass müsste ja gelten nur wie zeige ich dass??

        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Di 29.11.2011
Autor: Blech

Hi,

> Jetzt zur Addition:
> Da bin ich mir nicht sicher aber da ich ja eigentlich nur x habe dachte ich mir

x+y+z= x+x+x $ [mm] \varepsilon [/mm] $ U

x, y und z sind ja reelle Zahlen. Also ist auch ihre Summe eine reelle Zahl und kein Vektor aus dem [mm] $\IR^3$. [/mm] Also kann sie auch nicht in U sein.


Die Frage ist, ob für

[mm] $\vektor{x_1\\ y_1\\ z_1}, \vektor{x_2\\ y_2\\ z_2} \in U_4$ [/mm]

auch deren Summe in [mm] $U_4$ [/mm] ist. Wie sieht denn die Summe von den 2 Vektoren aus?

ciao
Stefan



Bezug
        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Mi 30.11.2011
Autor: fred97

Zu [mm] U_4: [/mm]

        [mm] U_4=\{(x,x,x): x \in \IR\}= \{t(1,1,1): t \in \IR\} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de