www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Untervektorraum
Untervektorraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Untervektorraum, Parabel
Status: (Frage) beantwortet Status 
Datum: 14:46 Mi 11.12.2013
Autor: YuSul

Aufgabe
Zeigen Sie, dass die Parabel [mm] $P=\{(x,x^2|x\in\mathbb{R}\}\subseteq\mathbb{R}^2$ [/mm] kein Untervektorraum ist.

Hi, ich habe eine Frage zu dieser Aufgabe.
Ich muss ja eigentlich nur nachrechnen ob die Eigenschaften für den Untervektorraum gelten, dieser also bezüglich der Addition und multiplikation mit Skalaren abgeschlossen ist.

Die Parabel nimmt ja stets positive Werte an. Wenn ich also mit einem negativen Skalar multipliziere, dann würde dies direkt zeigen, dass die Parabel bezüglich der muliplikation mit Skalaren im allgemeinen nicht abgeschlossen ist.

Die Parabel sollte auch bezüglich der addition nicht abgeschlossen sein.
Wenn ich zwei Paare habe

[mm] $(x_1,x_1^2)$ [/mm] und [mm] $(x_2,x_2^2)$ [/mm] und addiere diese, dann erhalte ich ja:

[mm] $(x_1+x_2,x_1^2+x_2^2)$ [/mm] und dieser Punkt sollte auch im allgemeinen nicht auf der Parabel liegen, da die y-Koordiante in dazu [mm] $(x_1+x_2)^2$ [/mm] lauten müsste.

Die Parabel ist also kein Untervektorraum des [mm] $R^2$, [/mm] auch wenn es ja reichen würde eines der beiden zu widerlegen.

Wäre das so richtig?

Danke für jede Hilfe.

        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mi 11.12.2013
Autor: fred97


> Zeigen Sie, dass die Parabel
> [mm]P=\{(x,x^2|x\in\mathbb{R}\}\subseteq\mathbb{R}^2[/mm] kein
> Untervektorraum ist.
>  Hi, ich habe eine Frage zu dieser Aufgabe.
>  Ich muss ja eigentlich nur nachrechnen ob die
> Eigenschaften für den Untervektorraum gelten, dieser also
> bezüglich der Addition und multiplikation mit Skalaren
> abgeschlossen ist.
>  
> Die Parabel nimmt ja stets positive Werte an. Wenn ich also
> mit einem negativen Skalar multipliziere, dann würde dies
> direkt zeigen, dass die Parabel bezüglich der
> muliplikation mit Skalaren im allgemeinen nicht
> abgeschlossen ist.
>  
> Die Parabel sollte auch bezüglich der addition nicht
> abgeschlossen sein.
> Wenn ich zwei Paare habe
>  
> [mm](x_1,x_1^2)[/mm] und [mm](x_2,x_2^2)[/mm] und addiere diese, dann erhalte
> ich ja:
>  
> [mm](x_1+x_2,x_1^2+x_2^2)[/mm] und dieser Punkt sollte auch im
> allgemeinen nicht auf der Parabel liegen, da die
> y-Koordiante in dazu [mm](x_1+x_2)^2[/mm] lauten müsste.
>  
> Die Parabel ist also kein Untervektorraum des [mm]R^2[/mm], auch
> wenn es ja reichen würde eines der beiden zu widerlegen.
>  
> Wäre das so richtig?

Ja. Bring doch nur das folgende Beispiel:

   [mm] p_1=(1,1) \in [/mm] P, aber [mm] -p_1 \notin [/mm] P.

Das reicht.

FRED

>  
> Danke für jede Hilfe.


Bezug
                
Bezug
Untervektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Mi 11.12.2013
Autor: YuSul

Ja, das wäre ja gerade die multiplikation mit dem Skalar -1, wollte das in meiner Frage nur etwas allgemeiner halten um zu gucken ob ich es verstanden habe.

Danke für die Kontrolle.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de