www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum und Dimension
Untervektorraum und Dimension < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum und Dimension: Aufgabe
Status: (Frage) überfällig Status 
Datum: 13:53 Mi 20.11.2013
Autor: Babybel73

Hallo zusammen

Bin gerade an folgender Aufgabe:

Es sei K ein beliebiger Körper und St(nxn, K) bezeichne die Teilmenge von Mat(nxn, K), die aus allen Matrizen A besteht, für welche alle Zeilensummen den gemeinsamen Wert [mm] \sigma(A) [/mm] haben.
Man zeige, dass St(nxn, K) ein Untervektorraum der Dimension [mm] n^2-n+1 [/mm] ist.

Meine Lösung dazu:
z.z. St(nxn, K) ist Untervektorraum
1) St(nxn, K) ist nichtleer, da die Nullmatrix enthalten ist.

2) A [mm] \in [/mm] St(nxn, K) & B [mm] \in [/mm] St(nxn, K) [mm] \Rightarrow [/mm] (A+B) [mm] \in [/mm] St(nxn, K)
C = A+B = [mm] (a_{ij} [/mm] + [mm] b_{ij})_{i=1,...,n; j=1,...n} [/mm]
[mm] \Rightarrow \summe_{i=1}^{n} c_{ki} [/mm] = [mm] \summe_{i=1}^{n} a_{ki} [/mm] + [mm] \summe_{i=1}^{n} b_{ki} =\summe_{i=1}^{n} (a_{ki}+b_{ki}) [/mm] = [mm] \sigma(A) [/mm] + [mm] \sigma(B) [/mm] =: [mm] \sigma(C) [/mm]
[mm] \Rightarrow [/mm] (A+B) [mm] \in [/mm] St(nxn, K)

3) [mm] \lambda \in [/mm] K & A [mm] \in [/mm] St(nxn, K) [mm] \Rightarrow \lambda*A \in [/mm] St(nxn, K)
[mm] \lambda [/mm] * A = [mm] \pmat{ \lambda*a_{11} & ... & \lambda*a_{1n} \\ ... \\ \lambda*a_{n1} & ... & \lambda*a_{nn} } [/mm] = D
[mm] \Rightarrow \summe_{i=1}^{n} d_{ki} [/mm] = [mm] \lambda *\sigma(A) [/mm] =: [mm] \sigma(D) \Rightarrow \lambda [/mm] * A [mm] \in [/mm] St(nxn, K)

Ist das so korrekt?

z.z.: dim(St(nxn, K)) = [mm] n^2-n+1 [/mm]
Da weiss ich nicht wirklich wie ich es zeigen soll. Ich sollte doch eine Basis des Unterraums finden. Aber das klappt nicht so wirklich.
z.B. für n=2: Ist da die Basis nicht:
[mm] \{\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 }\} [/mm]
Dann wäre ja die dim(St(2x2, K) = 4, aber laut der Formel ist die dim(St(2x2, K)= [mm] 2^2-2+1=3 [/mm]
Also wie ist denn die Basis für n=2?

Dann habe ich noch eine weitere Aufgabe:
Sei Sym(nxn, K) die Teilmenge der A [mm] \in [/mm] Mat(nxn, K) mit [mm] A^t=A. [/mm] Man zeige, dass Sym(nxn, K) ein Unterraum ist und bestimme die Dimension.

Meine Lösung:
Zu zeigen, dass Sym(nxn, K) ein Unterraum ist, war kein Problem.
Die Dimension dieses Unterraums steht ja auf Wikipedia:  [mm] \bruch{n*(n+1)}{2} [/mm]
Aber wie zeige ich diese formal richtig/ wie komme ich von selbst auf diese Formel?
Habe mir die Basen für n=2,3,4 notiert. Meine Anzahl Basiselemente stimmt auch mit der obigen Formeln der Dimension überein. Aber ich glaube selbst wäre ich nie auf diese Formel gekommen.

Liebe Grüsse


        
Bezug
Untervektorraum und Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mi 20.11.2013
Autor: leduart

Hallo
deine sog Basis hat doch nicht die gleichen Zeilensummen, ist also falsch,
du musst keine basis finden, obwohl das auch geht, fang mit der Einheitsmatrix an
sondern zeigen, was der rang der matrix ist.
gruss leduart

Bezug
                
Bezug
Untervektorraum und Dimension: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:50 Mi 20.11.2013
Autor: Babybel73

Hallo leduart

Vielen Dank für deinen Kommentar. Leider beantwortet das nicht wirklich alle meine Fragen!???

Den rang von welcher Matrix??? Und wie komme ich dann auf die Dimension?

Liebe Grüsse

Bezug
                        
Bezug
Untervektorraum und Dimension: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 22.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Untervektorraum und Dimension: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 22.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de