www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - V ein K-VR, U,W Unterräume
V ein K-VR, U,W Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

V ein K-VR, U,W Unterräume: Beweis Äquivalenz von Aussagen
Status: (Frage) beantwortet Status 
Datum: 20:39 Sa 23.06.2012
Autor: silfide

Aufgabe
Sei K ein Körper, V ein K-Vektorraum, sowie U,W Unterräume von V mit V=U+W:={u+w|u [mm] \in [/mm] U, w [mm] \in [/mm] W}
Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
(i) V=U [mm] \oplus [/mm] V, d.h. V=U+W und U [mm] \cap [/mm] w ={0}
(ii) Zu jedem v [mm] \in [/mm] V gibt es eindeutig bestimmte u [mm] \in [/mm] U und w [mm] \in [/mm] W mit v=u+w.
(iii) Ist u [mm] \in [/mm] U \ {0} und w [mm] \in [/mm] W \ {0}, so sind u und w linear unabhängig.

Hallo Leute,

ich sitze gerade an obiger Aufgabe. Komme aber nciht sehr weit.

Dachte an Beweis mit Ringschluss, also [mm] (i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(i). [/mm]


[mm] "(i)\Rightarrow(ii)" [/mm]
folgt sofort aus der Definition, dass jeder Vektor v [mm] \in [/mm] V als Summe v=u+w mit u [mm] \in [/mm] U und w [mm] \in [/mm] W dargestellt werden kann.
Nun ist die Wohldefiniertheit zu zeigen:
Da U [mm] \cap [/mm] W ={0} folgt das es solche Darstellung V=u+w=u'+w' mit u,u' [mm] \in [/mm] U und w,w' [mm] \in [/mm] W (aus dieser Darstellung folgt u-u'=w'-w [mm] \in [/mm] U [mm] \cap [/mm] W) gibt. Also u=u' und w=w'

[mm] "(ii)\Rightarrow(iii)" [/mm]

Hier hakt es auch schon!
Nun doch zum Versuch:

Da v=u+w und es sich um ein K-Vektorraum handelt, gibt es ein [mm] \alpha \in [/mm] K.
Also gilt auch folgende Formel:
[mm] \summe_{i=1}^{n} \alpha_{i}*v_{i}=\summe_{i=1}^{n} \alpha_{i}*(u_{i}+w_{i}) [/mm]
mit u [mm] \not= [/mm] 0 und v [mm] \not= [/mm] 0, kann die Formel nur für [mm] \alpha_{i}=0 [/mm] erfüllt sein, was wiederum heißt, dass u [mm] \in [/mm] U \ {0} und w [mm] \in [/mm] W \ {0} linear unabhängig sind.

Jetzt müsse ich noch den Ring mit [mm] (iii)\Rightarrow(i) [/mm] schließen, allerdings verlässt mich hier jeglicher Geistesblitz.

Jemand Anregungen??
Oder/und Äußerungen, ob es bis hierhin wenigstens richtig ist?? (auch wenn es komisch aufgeschrieben ist)

Silfide


        
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Sa 23.06.2012
Autor: Teufel

Hi!

i) [mm] \Rightarrow [/mm] ii) sieht gut aus.

Bei ii) [mm] \Rightarrow [/mm] iii) weiß ich nicht so recht, was du machst. Du willst wohl mit Komponenten arbeiten, aber du musst ja nicht unbedingt im Vektorraum [mm] K^n [/mm] sein.

Probiere es mal so:
Seien $u [mm] \in U\backslash \{0\}$ [/mm] und $w [mm] \in W\backslash \{0\}$. [/mm] Du willst nun zeigen: [mm] $\lambda u+\mu [/mm] w=0 [mm] \Rightarrow \lambda [/mm] = [mm] \mu [/mm] = 0$. Nun kannst du ii) ins Spiel bringen, weil [mm] $\lambda [/mm] u [mm] \in [/mm] U$ und [mm] $\mu [/mm] w [mm] \in [/mm] W$ sind.

Und zu iii) [mm] \Rightarrow [/mm] i):
Ok, also $V=U+W$ hast du ja schon gegeben. Jetzt musst du noch zeigen, dass $U [mm] \cap W=\{ 0\}$ [/mm] ist. Nimm dazu einfach mal ein Element x aus $U [mm] \cap [/mm] W$, das nicht 0 ist. Das wollen wir nun zum Widerspruch führen, weil es so ein x gar nicht geben sollte. Dann ist $x [mm] \in U\backslash \{0\}$ [/mm] und $x [mm] \in W\backslash \{0\}$. [/mm] Kann das denn sein, wenn du dir die Aussage in iii) nochmal durchliest?

Bezug
                
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Sa 23.06.2012
Autor: silfide

Hey,
>  
> Bei ii) [mm]\Rightarrow[/mm] iii) weiß ich nicht so recht, was du
> machst. Du willst wohl mit Komponenten arbeiten, aber du
> musst ja nicht unbedingt im Vektorraum [mm]K^n[/mm] sein.

Ich weiß jetzt gar nicht wie du auf [mm] K^{n} [/mm] kommst. In der Aufgabenstellung steht doch, dass V ein K-Vektorraum ist. Also dachte ich mir, dass ich mir die Definition einer Basis des Vektorraumes zu nutze machen kann. Und da heißt es für endlich viele [mm] v_{1},...,v_{n} \in [/mm] V und [mm] \alpha_{1},...,\alpha_{n} \in [/mm] K bezeichnet man die Summe [mm] s=\summe_{i=1}^{n}\alpha_{i}*v_{i} [/mm] als Linearkombination der Vektoren [mm] v_{1},...,v_{n}. [/mm]

Ist es hier nicht egal was n annimmt?? Die Formel ist doch allgemeingültig, oder nicht??

> Probiere es mal so:
>  Seien [mm]u \in U\backslash \{0\}[/mm] und [mm]w \in W\backslash \{0\}[/mm].
> Du willst nun zeigen: [mm]\lambda u+\mu w=0 \Rightarrow \lambda = \mu = 0[/mm].
> Nun kannst du ii) ins Spiel bringen, weil [mm]\lambda u \in U[/mm]
> und [mm]\mu w \in W[/mm] sind.

Das [mm] \lambda [/mm] u [mm] \in [/mm] U und [mm] \mu [/mm] w [mm] \in [/mm] W sind, liegt auch wieder an der Definition eines Vektorraumes, richtig??


> Und zu iii) [mm]\Rightarrow[/mm] i):
>  Ok, also [mm]V=U+W[/mm] hast du ja schon gegeben. Jetzt musst du
> noch zeigen, dass [mm]U \cap W=\{ 0\}[/mm] ist. Nimm dazu einfach
> mal ein Element x aus [mm]U \cap W[/mm], das nicht 0 ist. Das wollen
> wir nun zum Widerspruch führen, weil es so ein x gar nicht
> geben sollte. Dann ist [mm]x \in U\backslash \{0\}[/mm] und [mm]x \in W\backslash \{0\}[/mm].
> Kann das denn sein, wenn du dir die Aussage in iii) nochmal
> durchliest?

Nein, so ein x kann es nicht geben, weil U [mm] \cap [/mm] W der Nullvektor ist...

Danke für deine Hilfe.


Bezug
                        
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Sa 23.06.2012
Autor: Teufel

Hi nochmal!

Ok dann hab ich deine Ausführung nur falsch verstanden.

Ja, also dass [mm] $\lambda U\in [/mm] U$ und [mm] $\mu [/mm] w [mm] \in [/mm] W$ liegt daran, dass U und W Vektorräume sind. Aber damit ist der Beweis noch nicht fertig! Nach ii) weißt du, dass $u+ w=0$ genau eine Darstellung hat, und die kennst du sogar! Nämlich 0+0=0. Nun hast du [mm] $\lambda [/mm] u + [mm] \mu [/mm] w=0$ gegeben. Was folgt daraus?

Und zum letzten Schritt: ja, so ein x kann es nicht geben, aber das willst du ja gerade zeigen! Von daher kannst du noch nicht damit argumentieren.
Lies dir nochmal die Aussage iii) durch, wobei du für u und w den gleichen Vektor x einsetzt. Dann solltest du einen Widerspruch sehen!

Bezug
                                
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Sa 23.06.2012
Autor: silfide

Hi nochmal!

  

> Ok dann hab ich deine Ausführung nur falsch verstanden.
>  
> Ja, also dass [mm]\lambda U\in U[/mm] und [mm]\mu w \in W[/mm] liegt daran,
> dass U und W Vektorräume sind. Aber damit ist der Beweis
> noch nicht fertig! Nach ii) weißt du, dass [mm]u+ w=0[/mm] genau
> eine Darstellung hat, und die kennst du sogar! Nämlich
> 0+0=0. Nun hast du [mm]\lambda u + \mu w=0[/mm] gegeben. Was folgt
> daraus?

Okay, nun bin ich völlig verwirrt.
Wenn u+ w=0 nur die Darstellung 0+0=0 zulässt, folgt dass mit [mm] \lambda [/mm] u + [mm] \mu [/mm] w=0 [mm] \lambda [/mm] und [mm] \mu [/mm] beliebig sein können (da [mm] \lambda*0 [/mm] + [mm] \mu*0=0 [/mm] alles für [mm] \lambda [/mm] und [mm] \mu [/mm] zulässt, also z.B. 7*0+9*0=0). Allerdings ist doch die Lineare Unabhängigkeit so definiert, dass [mm] \lambda [/mm] = [mm] \mu [/mm] = 0 sein muss, damit die Vektoren linear unabhängig sind.

Silfide

Bezug
                                        
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Sa 23.06.2012
Autor: Teufel

Ok, lösen wir das mal etwas auf. :)

[mm] $\lambda [/mm] u + [mm] \mu [/mm] w = 0$. Nach ii) weißt du, dass dann [mm] $\lambda [/mm] u =0$ und [mm] $\mu [/mm] w = 0$ sein müssen, wegen der Eindeutigkeit der Darstellung von 0. Nun sind aber u und w beide nicht 0 nach Voraussetzung in iii)! Also müssen [mm] \lambda [/mm] und [mm] \mu [/mm] beide zwangsweise 0 sein.

Bezug
                                                
Bezug
V ein K-VR, U,W Unterräume: Frage!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 23.06.2012
Autor: silfide

Okay, jetzt klingt es wieder logisch - nun weiß ich auch was du gemeint hast.


Verstehe allerdings immer noch nicht, warum ich, dass nicht mit [mm] \summe_{i=1}^{n}a_{i}v_{i}=0 [/mm] machen kann, ist dass nicht gehupt wie gesprungen??

Naja, wenn es gehupt wie gesprungen ist, sollte es mir vieleicht egal sein ... aber irgdendwie ist es das nicht...

Also: Kann man das so machen??

Hier wäre es ja:

[mm] \summe_{i=1}^{1}a_{1}v_{1}=\summe_{i=1}^{1}a_{1}(u_{1}+w_{1})=a_{1}u_{1}+a_{1}w_{1}=0 [/mm] und weil [mm] u,w\not=0 [/mm] -> [mm] a_{1}=0 [/mm] und somit linear unabhängig

Silfide




Bezug
                                                        
Bezug
V ein K-VR, U,W Unterräume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:34 Sa 23.06.2012
Autor: silfide

Edit: Da es doch eine Frage wurde, und damit es ersichtlich ist - hier nun  ein Doppelpost (was ich eigentlich hasse, also entschuldigt)


Okay, jetzt klingt es wieder logisch - nun weiß ich auch was du gemeint hast.


Verstehe allerdings immer noch nicht, warum ich, dass nicht mit [mm] \summe_{i=1}^{n}a_{i}v_{i}=0 [/mm] machen kann, ist dass nicht gehupt wie gesprungen??

Naja, wenn es gehupt wie gesprungen ist, sollte es mir vieleicht egal sein ... aber irgdendwie ist es das nicht...

Also: Kann man das so machen??

Hier wäre es ja:

[mm] \summe_{i=1}^{1}a_{1}v_{1}=\summe_{i=1}^{1}a_{1}(u_{1}+w_{1})=a_{1}u_{1}+a_{1}w_{1}=0 [/mm] und weil [mm] u,w\not=0 [/mm] -> [mm] a_{1}=0 [/mm] und somit linear unabhängig

Silfide




Bezug
                                                                
Bezug
V ein K-VR, U,W Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 So 24.06.2012
Autor: Teufel

Hi!

Also ich weiß nicht genau, was du mit mit den [mm] u_i [/mm] und [mm] w_i [/mm] in [mm] \summe_{i=1}^{n}\alpha_i (u_i [/mm] + [mm] w_i) [/mm] meinst. Sollen das Basiselemente von U und W sein? Aber die Dimensionen der beiden Räume ist ja im allgemeinen $<n$! Ansonsten erkläre nochmal, was du genau machen wolltest.

Bezug
                                                                        
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 So 24.06.2012
Autor: silfide


> Hi!
>  
> Also ich weiß nicht genau, was du mit mit den [mm]u_i[/mm] und [mm]w_i[/mm]
> in [mm]\summe_{i=1}^{n}\alpha_i (u_i[/mm] + [mm]w_i)[/mm] meinst. Sollen das
> Basiselemente von U und W sein? Aber die Dimensionen der
> beiden Räume ist ja im allgemeinen [mm]
> nochmal, was du genau machen wolltest.

Hey,

also  zwischen dem [mm] \summe_{i=1}^{1}a_{1}v_{1} [/mm] und dem Schritt [mm] \summe_{i=1}^{1}a_{1}(u_{1}+w_{1}) [/mm] habe ich verwendet das v=u+w ist, was aus (ii) folgt.

Wobei man vllt. doch ehr so vorgehen müsste:

$ [mm] \summe_{i=1}^{n}a_{n}v_{n}=\summe_{i=1}^{n}b_{n}u_{n}+$ \summe_{i=1}^{n}c_{n}w_{n}=0 [/mm]

Womit man wieder bei deiner Lösung wäre, oder??

Silfide


Bezug
                                                                                
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 So 24.06.2012
Autor: Teufel

Genau, ich meinte eigentlich die Formel mit dem n aus deinem 1. Post.

Was genau sind da die [mm] u_i [/mm] und [mm] w_i? [/mm] Sollen die [mm] u_i [/mm] und [mm] w_i [/mm] eine Basis von U bzw. W sein oder sind das nur irgendwelche Elemente, die jeweils [mm] v_i [/mm] ergeben sollen, wobei [mm] v_i [/mm] eine Basis von V ist?

Bezug
                                                                                        
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 So 24.06.2012
Autor: silfide


> Genau, ich meinte eigentlich die Formel mit dem n aus
> deinem 1. Post.
>  
> Was genau sind da die [mm]u_i[/mm] und [mm]w_i?[/mm] Sollen die [mm]u_i[/mm] und [mm]w_i[/mm]
> eine Basis von U bzw. W sein oder sind das nur irgendwelche
> Elemente, die jeweils [mm]v_i[/mm] ergeben sollen, wobei [mm]v_i[/mm] eine
> Basis von V ist?

Nein, dass sollten nur irgendwelche Elemente sein (gemäß (ii), die jeweils [mm] v_i [/mm] ergeben sollen.
Wenn es Basen wären, müsste ich ja noch zeigen das diese auch wirklich V aufspannen.

Silfide


Bezug
                                                                                                
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 24.06.2012
Autor: Teufel

Ok, also du hast dann [mm] $\summe_{i=1}^{n}\alpha_i v_i=\summe_{i=1}^{n}\alpha_i u_i+\summe_{i=1}^{n}\alpha_i w_i$. [/mm] Aber was nun? In deinem ersten Beitrag sagst du dann, dass u und w beide nicht 0 sind. Was meinst du mit u und w hier genau? Denn anstatt nur 2 Vektoren u und w anzuschauen, hast du ja nun 2n Vektoren [mm] u_i [/mm] und [mm] w_i [/mm] für i=1,...n hier!

Bezug
                                                                                                        
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 So 24.06.2012
Autor: silfide


> Ok, also du hast dann [mm]\summe_{i=1}^{n}\alpha_i v_i=\summe_{i=1}^{n}\alpha_i u_i+\summe_{i=1}^{n}\alpha_i w_i[/mm].
> Aber was nun? In deinem ersten Beitrag sagst du dann, dass
> u und w beide nicht 0 sind. Was meinst du mit u und w hier
> genau? Denn anstatt nur 2 Vektoren u und w anzuschauen,
> hast du ja nun 2n Vektoren [mm]u_i[/mm] und [mm]w_i[/mm] für i=1,...n hier!

Ja, aber wenn n=1 ist, habe ich doch wieder nur 2 Vektoren.
Und die Formel ist doch allgemeingültig, also kann ich doch sagen, dass n=1 ist.


Bezug
                                                                                                                
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 So 24.06.2012
Autor: Teufel

Ok, aber wenn n=1, dann ist dein Vektorraum nur eindimensional! Dann hast du es ja nicht für alle endlichdimensionalen vektorräume gezeigt.

Ansonsten argumentiere nochmal ganz sauber. Vielleicht sehe ich immer noch nicht, was du genau machen willst.

Bezug
                                                                                                                        
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:48 Mo 25.06.2012
Autor: silfide

Hallo Teufel,

versuchen wir es mal anders:

Du meinst doch, dass u+w=0 bzw. [mm] \lambda [/mm] u + [mm] \mu [/mm] w=0.
Wie kommst du darauf??

(Ja, ich weiß, dass man so die lineare Unabhängigkeit zeigt, allerdings haben wir die Gleichung immer aus etwas anderem abgeleitet - deshalb frage ich)

Silfide

Bezug
                                                                                                                                
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mo 25.06.2012
Autor: Teufel

Hi!

Ich habe das so gemacht, weil mir nichts besseres eingefallen ist. :) Und wenn mir nichts einfällt, halte ich mich einfach streng an die Definition. Und dass Vektoren [mm] a_1, [/mm] ..., [mm] a_n [/mm] linear unabhängig sind, bedeutet ja per Definition, dass [mm] $\lambda_1 a_1+...+\lambda_n a_n=0 \Rightarrow \lambda_1=...=\lambda_n=0$. [/mm]

In deinem Fall vereinfacht sich das dann z.B. zu [mm] $\lambda [/mm] u + [mm] \mu [/mm] w=0$.

Bezug
                                                                                                                                        
Bezug
V ein K-VR, U,W Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mo 25.06.2012
Autor: silfide

Hey,

Ja, genau von dieser Formel [mm] (\lambda_1 a_1+...+\lambda_n a_n=0 \Rightarrow \lambda_1=...=\lambda_n=0) [/mm] bin ich auch ausgegangen, nur dass bei uns diese Formel
aus [mm] \summe_{i=1}^{n}\lambda_i a_i [/mm] folgt.

Also: [mm] \summe_{i=1}^{n}\lambda_{i} a_i [/mm] = [mm] \lambda_1 a_1+...+\lambda_n a_n=0 \Rightarrow \lambda_1=...=\lambda_n=0 [/mm]

Und wenn ich jetzt nur einen Vektor habe, dann ist n=1.

Betrachte ich, dass jetzt für v, ergibt sich [mm] \summe_{i=1}^{1}\lambda_{i} v_i =\lambda_1 v_1 \Rightarrow \lambda_1=0 [/mm] oder vereinfacht [mm] \summe_{i=1}^{1}\lambda_i v_i =\lambda [/mm] * v [mm] \Rightarrow \lambda=0 [/mm] und da v=u+w ist, folgt [mm] \summe_{i=1}^{1}\lambda_{i} v_i [/mm] = [mm] \summe_{i=1}^{1}\lambda_i(u_i+w_i)=\lambda [/mm] * [mm] (u+w)=\lambda [/mm] *u [mm] +\lambda*w \Rightarrow \lambda=0 [/mm]

Jedenfalls war das meine ursprüngliche Herangehensweise.

Silfide


Bezug
                                                                                                                                                
Bezug
V ein K-VR, U,W Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 25.06.2012
Autor: Teufel

Ah ok, ich sehe, was du da machen wolltest. Aber leider geht das nicht! Du willst folgern: [mm] $\lambda [/mm] v = 0 [mm] \Rightarrow \lambda [/mm] = 0$ Aber das stimmt ja nicht für alle Vektoren $v [mm] \in [/mm] V$. Ist z.B. v=0, so kannst du aus [mm] $\lambda [/mm] v = 0$ nichts von Wert folgern.

Die Implikation $ [mm] \summe_{i=1}^{n}\lambda_i a_i [/mm] =0 [mm] \Rightarrow \lambda_1=...=\lambda_n=0$ [/mm] ist nur dann richtig, wenn die [mm] a_i [/mm] linear unabhängig sind. Für einen einzelnen Vektor ist das genau dann der Fall, falls er nicht der Nullvektor ist. Das ist der erste Punkt, aus dem dein Vorhaben nicht klappt.

Dann ist da noch, dass du [mm] $\lambda [/mm] (u+w)=0 [mm] \Rightarrow \lambda=0$ [/mm] zeigst. Aber das reicht nicht, du musst wirklich [mm] $\lambda [/mm] u+ [mm] \mu [/mm] w=0 [mm] \Rightarrow \lambda=\mu=0$ [/mm] zeigen. Das ist, als wenn du zeigen wolltest, dass im [mm] \IR^2 [/mm] die Vektoren (1,0) und (2,0) linear unabhängig sind. Natürlich sind sie das nicht, aber nach deinem Beweis wäre ja [mm] $\lambda ((1,0)+(2,0))=(3\lambda, [/mm] 0)=0 [mm] \Rightarrow \lambda [/mm] = 0$.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de