www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Varianz
Varianz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Fr 18.01.2008
Autor: seb.schwartz

So, ich stolpere bei der Bearbeitung meiner Übungsblätter immer wieder auf folgende Begriffe

Varianz und Standartabweichung

Mitlerweile weiß ich:

Standartabweichung = [mm] \wurzel{Varianz} [/mm]  <=> Varianz = [mm] Standartabweichung^{2} [/mm]

Nun stelle ich mir die Frage, wie berechen ich die Varianz?

Ich bin bei meiner Recherche auf folgende Formel gestoßen:

[mm] s^{2} [/mm] = [mm] \bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}-\overline{x})^{2} [/mm]


was will mir der Term [mm] (x_{i}-\overline{x})^{2} [/mm] sagen?
ich subtrahiere jeweils Klassenmittel vom arithmetischen Mittel und potenziere den Term mit 2.

Bilde dann aus allen i's die Summe multipliziere es mit [mm] \bruch{1}{n-1} [/mm] und habe meine Varianz?

Bin ich komplett auf dem Holzweg oder sind wenigstens ansätze richtig?

Danke für die Hilfe
mfg seb

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Fr 18.01.2008
Autor: Tyskie84

Hallo!

Deine Ansätze sind schon richtig. Die Formel hast du auch richtig aufgestellt. Sagen wir du hast folgende werte bei einer Messung herausbekommen:
[mm] x_{1}=5, x_{2}=4, x_{3}=4, x_{4}=6 [/mm] und [mm] x_{5}=5 [/mm]
Du hast also 5 werte demnach ist n=5
[mm] \overline{x}=4,8 [/mm] den 5+4+4+6+5=24 und das dann durch n teilen. SO nun hast du das arit. Mittel.
Nun zu dem Term [mm] (x_{i}-\overline{x})². [/mm] Es golgt:
(5-4,8)²+(4-4,8)²+(4-4,8)²+(6-4,8)²+(5-4,8)²=2,8
Für s²ergibt sich dann: [mm] \bruch{1}{n-1}*3,44=\bruch{1}{4}*2,8=0,7 [/mm] OK?

[cap] Gruß

Bezug
                
Bezug
Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Fr 18.01.2008
Autor: seb.schwartz

Leider komm ich bei deinen Werten auf ein anderes Ergebnis.

(5-4,8)²+(4-4,8)²+(4-4,8)²+(6-4,8)²+(5-4,8)²=3,44
0,04      + 0,64    + 0,64     + 1,44    + 0,04    = 2,8


Für s²ergibt sich dann: [mm] \bruch{1}{n-1}\cdot{}3,44=\bruch{1}{5}\cdot{}3,44=0,688 [/mm] $ OK?

wie kommst du auf 5? n ist doch 5 oder? dementsprechend müßte das ganze dann doch

[mm] \bruch{1}{n-1}\cdot{}2,8=\bruch{1}{4}\cdot{}2,8=0,7 [/mm] sein oder?



Bezug
                        
Bezug
Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Fr 18.01.2008
Autor: Tyskie84

Hallo!
Ja du hast natürlich recht, sorry. Ich verbesser das jetzt :-)

Bezug
                                
Bezug
Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 Fr 18.01.2008
Autor: seb.schwartz

Danke für die hilfe ;-) nun kann ich ja in Ruhe weiter lernen :D

mfg Seb

Bezug
        
Bezug
Varianz: Ergänzung
Status: (Antwort) fertig Status 
Datum: 19:18 Fr 18.01.2008
Autor: informix

Hallo seb.schwartz,

> So, ich stolpere bei der Bearbeitung meiner Übungsblätter
> immer wieder auf folgende Begriffe
>  
> Varianz und Standartabweichung

[guckstduhier] MBStandardabweichung in unserm MBSchulMatheLexikon
achte auf die Schreibweise!!

>  
> Mitlerweile weiß ich:
>  
> Standartabweichung = [mm]\wurzel{Varianz}[/mm]  <=> Varianz =
> [mm]Standartabweichung^{2}[/mm]
>  
> Nun stelle ich mir die Frage, wie berechen ich die
> Varianz?
>  
> Ich bin bei meiner Recherche auf folgende Formel gestoßen:
>  
> [mm]s^{2}[/mm] = [mm]\bruch{1}{n-1} \summe_{i=1}^{n} (x_{i}-\overline{x})^{2}[/mm]
>  
>
> was will mir der Term [mm](x_{i}-\overline{x})^{2}[/mm] sagen?
>  ich subtrahiere jeweils Klassenmittel vom arithmetischen
> Mittel und potenziere den Term mit 2.
>
> Bilde dann aus allen i's die Summe multipliziere es mit
> [mm]\bruch{1}{n-1}[/mm] und habe meine Varianz?
>  
> Bin ich komplett auf dem Holzweg oder sind wenigstens
> ansätze richtig?
>  
> Danke für die Hilfe
>  mfg seb
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de