www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Varianz einer Linearkombi.
Varianz einer Linearkombi. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz einer Linearkombi.: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 30.03.2009
Autor: grenife

Aufgabe
Seien [mm] $Y_1,\ldots,Y_n$ [/mm] Zufallsvariablen mit endlicher Varianz.
(1) Zeigen Sie, dass für beliebige Konstanten $a,b$ gilt:
[mm] $var(aY_1+bY_2)=a^2var(Y_1)+2abcov(Y_1,Y_2)+b^2\arY_2$. [/mm]
(2) Nehmen Sie an, dass die [mm] $Y_1,\ldots,Y_n$ [/mm] stoch. unabhängig mit identischer Varianz [mm] $\sigma^2<\infty$ [/mm] sind. Zeigen Sie für beliebige Konstanten [mm] $a_1,\ldots,a_n$, [/mm] dass
[mm] $var\sum_{i=1}^na_iY_i=\sigma^2\sum_{i=1}^na_i^2$ [/mm]
gilt.

Hallo zusammen,

würde mich über ein Feedback zu meiner Lösung freuen. Bei der zweiten Teilaufgabe hänge ich noch etwas bei dem Induktionsbeweis, vielleicht kann mir ja jemand einen kleinen Denkanstoß geben.

zu (1):
Laut Definition der Varianz gilt mit [mm] $Z:=aY_1+bY_2$: [/mm]
[mm] $var(aY_1+bY_2)=E((Z-E(Z))^2)$ [/mm]
Die zweite binomische Formel zusammen mit der Linearität des Erwartungswertes und der Tatsache, dass $E(E(Z))=E(Z)$ ist, liefert den Verschiebungssatz:
[mm] $E((Z-E(Z))^2)=E(Z^2-2Z\cdot E(Z)+(E(Z))^2)=E(Z^2)-(E(Z))^2$ [/mm]

Eingesetzt ergibt sich
[mm] $E((aY_1+bY_2)^2)-(E(aY_1+bY_2))^2$ [/mm]
[mm] $=a^2E(Y_1^2)+b^2E(Y_2^2)+2abE(Y_1Y_2)-a^2(E(Y_1))^2-b^2(E(Y_2))^2-2ab(E(Y_1)E(Y_2)$ [/mm]
[mm] $=2ab[E(Y_1Y_2)-E(Y_1)E(Y_2)]+a^2[E(Y_1^2)-(E(Y_1))^2]+b^2[E(Y_2^2)-(E(Y_2))^2]$ [/mm]
und mit dem Verschiebungssatz für die Kovarianz schließlich.
[mm] $=2abcov(Y_1,Y_2)+a^2var(Y_1)+b^2var(Y_2)$ [/mm]
q.e.d.


zu (2):
Da [mm] $\sigma^2$ [/mm] unabhängig vom Laufindex ist, ist die Behauptung äquivalent zu:

[mm] $var\sum_{i=1}^na_iY_i=\sum_{i=1}^na_i^2\sigma^2$ [/mm]

Induktion nach $n$:
Induktionsanfang:
Für $n=1$ folgt die Behauptung [mm] $var(a_1Y_1)=a_1^2\sigma^2$ [/mm] einfach aus den oben genannten Eigenschaften des Erwartungswertes bzw. den Verschiebungssätze.
Der Fall $n=2$ ist in (1) dargestellt, die Kovarianz fällt wegen der stoch. Unabhängigkeit der [mm] $Y_i$ [/mm] weg.

Induktionsschritt:
Es gelte [mm] $var\sum_{i=1}^na_iY_i=\sigma^2\sum_{i=1}^na_i^2$ [/mm] für ein festes $n$ und wir betrachten
[mm] $var\left(\sum_{i=1}^{n+1}a_iY_i\right)$ [/mm]
[mm] $=var\left(a_{n+1}Y_{n+1}+\sum_{i=1}^{n}a_iY_i\right)$ [/mm]

Hier hänge ich noch etwas, das Auflösen der Varianz über den Verschiebungssatz scheint mir ziemlich umständlich zu sein.

Vielen Dank für Eure Hilfe und viele Grüße
Gregor



        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mo 30.03.2009
Autor: vivo

Hallo,


[mm] var\left(a_{n+1}Y_{n+1}+\sum_{i=1}^{n}a_iY_i\right) [/mm] = [mm] a_{n+1}^2Var(Y_{n+1}) [/mm] + [mm] \summe a_i^2 \sigma2 [/mm]

reicht doch schon, denn dass ist doch wieder eine Summe und laut Induktionsannahme folgt die Gleichheit

Bezug
                
Bezug
Varianz einer Linearkombi.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Di 31.03.2009
Autor: grenife

Hallo,

ich glaube, so einfach geht das nicht. Klar, die Varianz des zweiten Summanden kann ich mit der Induktionsannahme zur Summe der Varianzen mal [mm] $a_i^2$ [/mm] auflösen, aber dafür muss ich ja die Varianz erst IN die Klammer ziehen, und da die Varianz nicht linear ist, klappt das nicht. Ich fürchte eben, dass ich die Summe formal auflösen, mit [mm] $cov(Y_i,Y_j)=0$ [/mm] vereinfachen und am Ende mit der Induktionsannahme auflösen muss.

Viele Grüße
Gregor

> Hallo,
>  
>
> [mm]var\left(a_{n+1}Y_{n+1}+\sum_{i=1}^{n}a_iY_i\right)[/mm] =
> [mm]a_{n+1}^2Var(Y_{n+1})[/mm] + [mm]\summe a_i^2 \sigma2[/mm]
>  
> reicht doch schon, denn dass ist doch wieder eine Summe und
> laut Induktionsannahme folgt die Gleichheit


Bezug
                        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Di 31.03.2009
Autor: vivo

Hallo,

[mm]Var(X_1 + X_2 + ... + X_n)=E[X_1 + X_2 + ... + X_n - E(X_1 + X_2 + ... + X_n)]^2=E[(X_1-EX_1)+...+(X_n-EX_n)]^2=\sum_{i,j=1}^{n}E[(X_i-EX_i)(X_j-EX_j)]=\sum_{i=1}^{n}E[(X_i-EX_i)]^2+\sum_{i,j=1_{i\not= j}}^{n}E[(X_i-EX_i)(X_j-EX_j)]=\sum_{i=1}^{n}Var(X_i)+2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Cov(X_i,X_j)[/mm]

und die Cov sind natürlich aufgrund der Unabhängigkeit alle gleich Null!

Aber die Induktionsbeweis sollte eigenltich auch halten, du könntest jetzt natürlich sagen dass du aus a) folgende Induktionsannahme hast:

[mm]\sum_{i=1}^{n}Var(X_i)+2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Cov(X_i,X_j)[/mm]

(eben das resultat aus a) bezogen auf mehr als zwei ZV's)

und dann:

[mm]Var(X_{n+1}+ \sum_{i=1}^{n}X_i)=Var(X_{n+1}) + \sum_{i=1}^{n} \sigma^2 + 2 Cov(X_{n+1}, \sum_{i=1}^{n}X_i)[/mm]

da die ZV's unabhängig sind, ist auch [mm] (X_{n+1}) [/mm] und [mm] (\sum_{i=1}^{n}X_i) [/mm] unabhänig, also die Cov gleich Null.

wegen dem letzten Argument über die unabhängigkeit, sollte es auch so reichen wie du es erst hattest, denn da wir die Induktionsannahme ja, dass für unabhängige ZV's gilt:

[mm]Var(\sum_{i=1}^{n}X_i)=\sum_{i=1}^{n} Var(X_i)[/mm]

also dann:

[mm]Var(X_{n-1} + \sum_{i=1}^{n-1}X_i)=Var(X_{n-1})+\sum_{i=1}^{n-1} Var(X_i)=\sum_{i=1}^{n}Var(X_n)[/mm]

würde ich zumindest sagen ... der Weg durch Berechnung ganz am Anfang dieser Antwort stimmt in jedem Fall.

Gruß

Bezug
                                
Bezug
Varianz einer Linearkombi.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 31.03.2009
Autor: grenife

Hallo vivo,

so könnte es wohl klappen. Eine kurze Frage noch: die Tatsache, dass in Deinen Ausführungen der Koeffizient [mm] $a_i$ [/mm] jeweis fehlt, kann ich wahrscheinlich umgehen, indem ich Deine Ergebnisse auf die ZVen [mm] $Z_i:=a_iX_i$ [/mm] anwende oder? Wenn ich dann alles aufgelöst habe, kann ich ja dann zurück substituieren und die einzelnen Varianzen von [mm] $a_iX_i$ [/mm] ausrechnen.

Viele Grüße
Gregor




Bezug
                                        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Di 31.03.2009
Autor: vivo

so ist es!

Gruß

vivo

Bezug
                                                
Bezug
Varianz einer Linearkombi.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Di 31.03.2009
Autor: grenife

Hallo nochmal,

mir ist ein Schritt in Deinem Beweis noch unklar.
Wie kommst Du denn auf die folgende Gleichung?

[mm] $E[(X_1-EX_1)+...+(X_n-EX_n)]^2=\sum_{i,j=1}^{n}E[(X_i-EX_i)(X_j-EX_j)]$ [/mm]

Ich glaube langsam, dass ich um den Induktionsbeweis nicht herum komme...

Viele Grüße
Gregor

Bezug
                                                        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Di 31.03.2009
Autor: vivo

Hallo,

Du musst nur das quadrat ausführen! Probier es doch mal mit n=4 aus, dann siehst Du es schon!

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de