www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektor und Koordinatensystem
Vektor und Koordinatensystem < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor und Koordinatensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mo 04.02.2008
Autor: Lothare

Hey ihr,
ich brauch mal wieder eure hilfe :) ich hoffe ihr könnt mir hier sagen wie ich das anpacken muss :) wäre sehr nett :)

Also folgende aufgabe:
Gegeben sei das folgende (schiefwinklige) [mm] Koordinatensystem_1 [/mm] bestehend aus i= [mm] \vektor{4 \\ 1} [/mm] und j = [mm] \vektor{1 \\ 2} [/mm] sowie ein Vektor mit den Koordinaten dieses Systems x = [mm] \vektor{0,5 \\ 2}. [/mm]

Gegeben sei nun ein zweites [mm] Koordinatensystem_2 [/mm] bestehend aus den Vektoren [mm] k=\vektor{-1 \\ 2} [/mm] und l = [mm] \vektor{-1 \\ -3/2}. [/mm]

a. Welche Koordinaten hat x in diesem zweiten System ?
b. Welche Koordinaten hat allgemein ein in [mm] System_1 [/mm] gegebener vektor x im [mm] System_2 [/mm] ?
c. Wie lässt sich allgemein ein in [mm] KoordinatenSystem_2 [/mm] gegebener Vektor in die Koordinaten von [mm] KoordinatenSystem_1 [/mm] umrechnen ?

Wäre nett wenn ihr mir hier ein paar anhaltspunkte geben könntet :)

Gruß Lothare
Und danke schonmal :)

        
Bezug
Vektor und Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mo 04.02.2008
Autor: angela.h.b.


> Hey ihr,
>  ich brauch mal wieder eure hilfe :) ich hoffe ihr könnt
> mir hier sagen wie ich das anpacken muss :) wäre sehr nett
> :)
>  
> Also folgende aufgabe:
>  Gegeben sei das folgende (schiefwinklige)
> [mm]Koordinatensystem_1[/mm][mm] (K_1) [/mm] bestehend aus i= [mm]\vektor{4 \\ 1}[/mm] und j
> = [mm]\vektor{1 \\ 2}[/mm] sowie ein Vektor mit den Koordinaten
> dieses Systems x = [mm]\vektor{0,5 \\ 2}.[/mm]
>  
> Gegeben sei nun ein zweites [mm]Koordinatensystem_2[/mm][mm] (K_2) [/mm]  bestehend
> aus den Vektoren [mm]k=\vektor{-1 \\ 2}[/mm] und l = [mm]\vektor{-1 \\ -3/2}.[/mm]
>  
> a. Welche Koordinaten hat x in diesem zweiten System ?
>  b. Welche Koordinaten hat allgemein ein in [mm]System_1[/mm]
> gegebener vektor x im [mm]System_2[/mm] ?
>  c. Wie lässt sich allgemein ein in [mm]KoordinatenSystem_2[/mm]
> gegebener Vektor in die Koordinaten von [mm]KoordinatenSystem_1[/mm]
> umrechnen ?

Hallo,

wenn x in den Koordinaten des ersten Systems gegeben ist, [mm] x:=\vektor{0,5 \\ 2}_{K_1} [/mm] bedeutet dies ja

x=0.5*i+2*j= [mm] \vektor{... \\ ...}_E [/mm]     (E sei die Standardbasis).

Du sollst nun den Vektor x in Koordinaten bzgl. [mm] K_2 [/mm] schreiben, also a und b herausfinden mit

x=0.5*i+2*j= [mm] \vektor{... \\ ...}_E=a*k [/mm] + b*l.

Es ist dann [mm] x=\vektor{a \\ b}_{K_2}. [/mm]


In b) sollst Du das allgemeiner machen.

Du hast gegeben [mm] x:=\vektor{x_1 \\ x_2}_{K_1}, [/mm] und Du sollst herausfinden, wie Du diesen Vektor als linearkombination v. k und l schreiben kannst. Die Faktoren vor k und l hängen natürlich von den [mm] x_i [/mm] ab, und diese faktoren sind dann die Einträge des Koordinatenvektores bzgl [mm] K_2. [/mm]

In c) dasselbe Spielchen andersrum.

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de