www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Vektoren
Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Punkt Pyramide
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 17.03.2005
Autor: darklion

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo ;)
Ich wäre sehr dankbar, wenn mir jemand einen Denksanstoß geben könnte.
Aufgabe lautet folgendermaßen. Man hat eine Pyramide mir quadratischer Grundfläche, alle Kanten haben die Länge a. Finde den Punkt im Inneren der Pyramide der von allen Ebenen den gleichen Abstand hat. So zuert hab ich den Ursprung des Koordinatensystems in die Mitte des Quadrats gesetzt. E die Spitze der Pyramide berechnet [mm] (o/o/a\wurzel(1/2)), [/mm] dann hab ich den Normalen vektor zu zwei gegenüberliegenen ebenen berechnet. ich hab jetzt auch deren hühe als gerade. Nur irgendwie bin ich jetzt verwirrt. Wie mache ich weiter? Danke für eure Hilfe.
Isabel

        
Bezug
Vektoren: Denkanstoß
Status: (Antwort) fertig Status 
Datum: 02:25 Fr 18.03.2005
Autor: Eddy

Hallo,
ich weiß nicht, obs stimmt, daher schlage ich dies hier nur vor.
Die Abstände interpretiere ich als Linie vom Mittelpunkt der Pyramide zum Mittelpunkt der Ebene. Sagen wir der Mittelpunkt hat die Koordinaten

M = [mm] \pmat{ x_{1} & x_{2} & x_{3} } [/mm]

und der Mittelpunkt der Grundfläche ist bei

G = [mm] \pmat{ 0 & 0 & 0 }, [/mm]

dann liegt der Mittelpunkt bei

M = [mm] \pmat{ 0 & 0 & x_{3} } [/mm]

Und die Länge L entspricht dann der dritten Achse, also [mm] x_{3}. [/mm]
Jetzt brauchst du noch den Abstand zu einer Ebene an der Seite, hierbei brauchst du aber nur eine, weil du den Punkt M schon mittig im Sinne der ersten und zweiten Achse gesetzt hast, nur noch die Höhe richtig verstellen musst quasi und das, weil die Grundfläche ja quadratisch ist.
Über die Vektorrechnung bekommst du einen Punkt einer der Seitenflächen wie folgt:

[mm] \overrightarrow{OMs} [/mm] =  [mm] \pmat{ a/2 & 0 & 0 } [/mm] + k *  [mm] \pmat{ -a/2 & 0 & a * \wurzel{ 1/2 }} [/mm]

wofür gilt 0 < k < 1.

Die Steigung der Seitenebene ist ja hier

ms = a * [mm] \wurzel{ 1/2 } [/mm] / (-a/2)

Du willst ja den Abstand messen und brauchst dafür eine Orthogonale, die die Steigung hat
ma = - (ms^(-1))

Das weiß man halt..

Jetzt hast du den Punkt M, den Punkt, der durch  [mm] \overrightarrow{OMs} [/mm] beschrieben wird und die Steigung der Abstandslinie.

Nun kannst du eine Gleichung aufstellen für eine Sekante, die durch diese Punkte geht, die aber die Steigung ma hat. Dadurch kannst du jetzt einen Punkt auf der Seitenfläche in Abhängigkeit von [mm] x_{3} [/mm] bestimmen.

Und dann gibt es ja auch noch so eine Formel, mit der man die Länge einer Gerade messen kann, wenn man die Koordinaten hat.. Man erinnere sich an den Pythagoras..

Ja und diese Länge muss letztendlich mit [mm] x_{3} [/mm] übereinstimmen.

Irgendwie kannst du das halt umformen, aber ein wenig musst du ja noch selber machen..

Bezug
        
Bezug
Vektoren: WinkelSymetralSteigung
Status: (Antwort) fertig Status 
Datum: 11:01 Fr 18.03.2005
Autor: FriedrichLaher

Hallo, darklion

ich mein, Du solltest die Steigung der WinkelSymetralebene
( schwarze Linie im 3eck rechts unten )
gegenüber der Grundfläche berechnen
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de