Vektoren: Aufgabe Dreieck < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
folgende Aufgabe: Durch die Punkte A=(1;4;2), B=(3;1;0) und C=(-1,1,2) wird ein Dreisck festegelegt. Man betimme die Länge der drei Seiten, die Innenwinkel und die Fläche.
Das Dreieck hab ich ganz normal gezeichnet, die Ecken mit ABC bezeichnet und die Seiten mit [mm] \vec{a} \vec{b} \vec{c}. [/mm] Die enstsprechenden Komponenten habe ich durch Differenzbildung errechnet. Die Beträge waren auch nicht das Problem.
Versuch jetzt die Winkel auszurechnen, klapppt aber nicht. Mein erster Ansatz war [mm] h_{c} [/mm] durch Projektion von [mm] \vec{b} [/mm] auf [mm] \vec{c} [/mm] und Pythagoras auzurechnen, um dann mit sinus und co an die winkel ranzukommen. Die ergebnisse haben aber nicht mit der Musterlösung übereinstimmt. Der zweite Ansatz war das Skalarprodukt komponentenweise auszurechnen und dann mit den Beträgen und dem cosinus an die Winkel ranzukommen. Hat irgendwie auch nicht geklappt. Könnte auch sein, dass ich mich irgendwo verrechnet hab...
Die Fläche dürfte kein Problem darstellen. Betrag des Kreuzproduktes von [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm] und davon die Hälfte.
Danke schonmal...
|
|
|
|
Hallo progmaker!
Für den Winkel [mm] $\varphi$ [/mm] zwischen zwei Vektoren [mm] $\vec{a}$ [/mm] und [mm] $\vec{b}$ [/mm] gilt doch folgende Formel :
[mm] [center]$\cos\left(\varphi\right) [/mm] \ = \ [mm] \bruch{\vec{a}*\vec{b}}{\left|\vec{a}\right|*\left|\vec{b}\right|}$[/center]
[/mm]
Hast Du mit dieser Formel gerechnet?
Sonst poste doch mal Deinen Rechenweg, damit wir Deinen Fehler finden können ...
Gruß vom
Roadrunner
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:35 Do 30.06.2005 | Autor: | progmaker |
Mein Rechenweg für den Winkel [mm] \alpha:
[/mm]
[mm] \vec{c}*\vec{b}=\pmat{2\\3\\2}*\pmat{-2\\-3\\4}=-4-9+8=-5
[/mm]
[mm] \alpha=arccos(\bruch{-5}{|\vec{c}||\vec{b}|})=arccos(\bruch{-5}{|\wurzel{17}||\wurzel{29}|})=103,01
[/mm]
|
|
|
|
|
Hallo progmaker!
Ich erhalte hier bereits andere Vektoren für die Dreiecksseiten:
[mm] $\vec{b} [/mm] \ = \ [mm] \overrightarrow{OA}-\overrightarrow{OC} [/mm] \ = \ [mm] \vektor{1 \\ 4 \\ 2}-\vektor{-1 \\ 1 \\ 2} [/mm] \ = \ [mm] \vektor{2 \\ 3 \\ \red{0}}$
[/mm]
[mm] $\vec{c} [/mm] \ = \ [mm] \overrightarrow{OA}-\overrightarrow{OB} [/mm] \ = \ [mm] \vektor{1 \\ 4 \\ 2}-\vektor{3 \\ 1 \\ 0} [/mm] \ = \ [mm] \vektor{\red{-}2 \\ 3 \\ 2}$
[/mm]
Gruß vom
Roadrunner
|
|
|
|
|
> [mm]\vec{b} \ = \ \overrightarrow{OA}-\overrightarrow{OC} \ = \ \vektor{1 \\ 4 \\ 2}-\vektor{-1 \\ 1 \\ 2} \ = \ \vektor{2 \\ 3 \\ \red{0}}[/mm]
>
> [mm]\vec{c} \ = \ \overrightarrow{OA}-\overrightarrow{OB} \ = \ \vektor{1 \\ 4 \\ 2}-\vektor{3 \\ 1 \\ 0} \ = \ \vektor{\red{-}2 \\ 3 \\ 2}[/mm]
Warum denn so und nicht anders herum?
Gruß,
progmaker
|
|
|
|
|
Hi, progmaker,
der Winkel zwischen 2 Vektoren ist so definiert, dass
- die beiden Vektoren vom gleichen Fußpunkt aus angetragen werden und
- dass er zwischen 0° und 180° beträgt.
Wenn ein Vektor zwischen 2 Punkten A und B liegt,
also: [mm] \overrightarrow{AB}, [/mm]
so wird gerechnet nach der Faustregel "Spitze minus Fuß", also:
[mm] \overrightarrow{AB} [/mm] = [mm] \overrightarrow{OB} [/mm] - [mm] \overrightarrow{OA}.
[/mm]
Wenn Du demnach den Winkel bei A berechnen willst, musst Du die Vektoren [mm] \overrightarrow{AB} [/mm] und Vektoren [mm] \overrightarrow{AC} [/mm] nach obigem Muster ausrechnen und dann mit der Formel den Winkel bestimmen!
Klaro?
|
|
|
|
|
OK, klar soweit. Dann wären
[mm]\overrightarrow{AB}[/mm] = [mm]\overrightarrow{OB}[/mm] - [mm]\overrightarrow{OA}.[/mm]
[mm]\overrightarrow{AC}[/mm] = [mm]\overrightarrow{OC}[/mm] - [mm]\overrightarrow{OA}.[/mm]
[mm]\overrightarrow{BC}[/mm] = [mm]\overrightarrow{OC}[/mm] - [mm]\overrightarrow{OB}.[/mm]
Richtig?
|
|
|
|
|
Hallo!
> OK, klar soweit. Dann wären
>
> [mm]\overrightarrow{AB}[/mm] = [mm]\overrightarrow{OB}[/mm] -
> [mm]\overrightarrow{OA}.[/mm]
> [mm]\overrightarrow{AC}[/mm] = [mm]\overrightarrow{OC}[/mm] -
> [mm]\overrightarrow{OA}.[/mm]
> [mm]\overrightarrow{BC}[/mm] = [mm]\overrightarrow{OC}[/mm] -
> [mm]\overrightarrow{OB}.[/mm]
>
> Richtig?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:59 Do 30.06.2005 | Autor: | progmaker |
Ok, danke Leute!
Gruß,
progmaker
|
|
|
|