www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektoren im R3
Vektoren im R3 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren im R3: geometrische Interpretation
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 11.12.2007
Autor: tricki

Aufgabe
Im IR3 seien die Vektoren x und y bzgl. kartesischer Koordi-
naten gegeben. Zeigen Sie:
a) jx + yj2 ¡ jx ¡ yj2 = 4 hx; yi. Geben Sie eine geometrische Interpretation
dieser Regel an.
b) Sei x = (3; 4; 0)T und y 2 IR3 mit jyj = 5, sowie
­
y; (0; 0; 1)T
®
6= 0 gegeben.
Berechnen Sie daraus mit Hilfe von a) den ÄO®nungswinkel zwischen x + y
und x ¡ y.

Hab leider wenig Plan, wie ich die Aufgabe bewältigen soll,? Wäre einer guten Lösung sehr verbunden. Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoren im R3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:33 Mi 12.12.2007
Autor: Zneques

Hallo,

tut mir wirklich leid, aber ich kann beim besten Willen nicht erkennen was das bedeuten soll. Sollte niemand antworten, würde ich empfehlen es nochmal lesbar aufzuschreiben.
Wenn du beim Schreiben auf die Symbole unter dem Textfeld klickst, stehen in der hellgrauen Textzeile die Zeichen, die du benutzen musst, damit das Zeichen eingefügt wird.  (Aus \ IR ,ohne Leerzeichen, wird [mm] \IR.) [/mm]
Mit der Vorschautaste kann man erkennen, ob das auch so funktioniert hat wie es soll.

Ciao.

Bezug
                
Bezug
Vektoren im R3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mi 12.12.2007
Autor: tricki

Im [mm] \IR^3 [/mm] seien die Vektoren x und y bzgl. kartesischer Koordi-
naten gegeben. Zeigen Sie:
a) /x + y/^2 - /x ¡ y/^2 = 4 <x, y>. Geben Sie eine geometrische Interpretation
dieser Regel an.
b) Sei x = (3; 4; [mm] 0)^T [/mm] und [mm] y\in \IR^3 [/mm] mit /y/ = 5, sowie ­<y; (0; 0; [mm] 1)^T> \not= [/mm] 0 gegeben.
Berechnen Sie daraus mit Hilfe von a) den Öffnungswinkel zwischen x + y
und x - y. ( "/" entspricht Betrag und [mm] x^2 [/mm] entspricht  [mm] x^2 [/mm]

Bezug
                        
Bezug
Vektoren im R3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:36 Do 13.12.2007
Autor: Zneques

Hallo,

(du hättest aus deiner Mitteilung eine Frage machen sollen)
Wenn du ein Parallelogramm mit den Ecken ABCD hast, wobei [mm] \vec{x}=\overrightarrow{AB}=\overrightarrow{DC} [/mm] und [mm] \vec{y}=\overrightarrow{BC}=\overrightarrow{AD}, [/mm]
dann gilt für die Diagonalen [mm] e=\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}=\vec{x}+\vec{y} [/mm] und [mm] f=\overrightarrow{DB}=\overrightarrow{DA}+\overrightarrow{AB}=-\vec{x}-\vec{y} [/mm]
somit :
[mm] |x+y|^2-|x-y|^2=e^2-f^2=|x|^2+|y|^2-2|x||y|cos(\beta) -(|x|^2+|y|^2-2|x||y|cos(\alpha))=4|x||y|cos(\alpha)=4 [/mm]      mit Hilfe des Kosinussatzes, und [mm] cos(\beta)=cos(180-\alpha)=-cos(\alpha) [/mm]
D.h. die Formel beschreibt das Verhältniss der Diagonalen, und damit auch die gesammte Form eines Paralellogramm.
(Zur Lösung solltest du unbedingt eine Skizze machen.)

Für b) kannst du den Kosinussatz benutzen. Wie das dann genau aussieht müsste in der Skizze gut zu sehen sein. Die Diagonalen halbieren sich.

Ciao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de