www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra/Geometrie" - Vektorenrechnung
Vektorenrechnung < Lineare Algebra/Geom < Zentralabi NRW < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorenrechnung: Lage zweier Graden zueinander
Status: (Frage) beantwortet Status 
Datum: 20:03 Mi 17.03.2010
Autor: Nehlja

Hallo,
Es geht um folgende zwei Aufgaben:
1.) Ich habe einmal die Gerade g die durch die Punkte B (0/4/1) und A (2/2/0) läuft und die Gerade h die durch die Punkte C(1/4/0) und D (0/1/2) geht.  

2.)Die Gerade g läuft durch B(3/4/0) und E(1,5/4/0)und die Gerade h durch A(3/0/0) und F(0/4/1)

Die Fragestellung ist nun, ob die Geraden sich schneiden.

Ich denke eigentlich alles verstanden zu haben, bin aber unsicher ob ich wirklich die richtigen Ergebnisse herausbekommen habe. Nachdem ich die Geradenleichungen aufgestellt  und gleichgesetzt habe, kam bei mir bei beiden Aufgaben eine leere Lösungsmenge heraus und somit wären in beiden Fällen die Geraden windschief. Stimmt das?
Wäre echt sehr sehr nett, wenn das jemand für mich überprüfen könnte.
Vielen Dank schon mal im Vorraus!

Lg
Nehlja

        
Bezug
Vektorenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 17.03.2010
Autor: abakus


> Hallo,
>  Es geht um folgende zwei Aufgaben:
>  1.) Ich habe einmal die Gerade g die durch die Punkte B
> (0/4/1) und A (2/2/0) läuft und die Gerade h die durch die
> Punkte C(1/4/0) und D (0/1/2) geht.  
>
> 2.)Die Gerade g läuft durch B(3/4/0) und E(1,5/4/0)und die
> Gerade h durch A(3/0/0) und F(0/4/1)
>  
> Die Fragestellung ist nun, ob die Geraden sich schneiden.
>  
> Ich denke eigentlich alles verstanden zu haben, bin aber
> unsicher ob ich wirklich die richtigen Ergebnisse
> herausbekommen habe. Nachdem ich die Geradenleichungen
> aufgestellt  und Gleichgesetzt habe, kam bei mir bei beiden
> Aufgaben eine leere Lösungsmenge heraus und somit wären
> in beiden Fällen die Geraden windschief. Stimmt das?
>  Wäre echt sehr sehr net, wenn das jemand für mich
> überprüfen könnte.
> Vielen Dank schon mal im Vorraus!
>  
> Lg
>  Nehlja

Hallo,
du hast deinen Lösungsweg leider nicht vorgestellt (und ich habe keine Lust, die Aufgabe komplett selbst zu rechnen).
Deshalb nur soviel:
Wenn du in beiden Geraden den selben Parameter (bestimmt t?) verwendest, wirst du den Schnittpunkt nicht finden (selbst wenn sie sich wirklich schneiden sollten).
Nenne den Parameter in der einen Geradengleichung "s" und den in der anderen Gleichung "t".
Dann kann ein vorhandener Schnittpunkt auch gefunden werden.
Gruß Abakus


Bezug
                
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 Mi 17.03.2010
Autor: Nehlja

ja, ich habe die Parameter [mm] \lambda [/mm] und [mm] \mu [/mm] genannt.
bei 1.)
sieht der Lösungsweg so aus:
2/2/0 + [mm] \lambda [/mm] -2/2/2 = 1/4/0 + [mm] \mu [/mm]

wenn ich dann [2]-[3] rechne kann ich nach [mm] \mu=0 [/mm] auflösen.
Das eingesetzt in [1] und [2] ergibt zum einen für [mm] \lambda=-\bruch{1}{2} [/mm] und zum anderen [mm] \lambda= [/mm] 1

somit wäre ja die Windschiefe ja eigentlich belegt



Bezug
                        
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mi 17.03.2010
Autor: abakus


> ja, ich habe die Parameter [mm]\lambda[/mm] und [mm]\mu[/mm] genannt.
> bei 1.)
> sieht der Lösungsweg so aus:
> 2/2/0 + [mm]\lambda[/mm] -2/2/2 = 1/4/0 + [mm]\mu[/mm]

Hallo,
hinter [mm] \mu [/mm] muss auch noch ein Vektor stehen.
Dein Vektor [mm] \vektor{-2\\2\\2} [/mm] ist fehlerhaft.

>  
> wenn ich dann [2]-[3] rechne kann ich nach [mm]\mu=0[/mm]
> auflösen.
>  Das eingesetzt in [1] und [2] ergibt zum einen für
> [mm]\lambda=-\bruch{1}{2}[/mm] und zum anderen [mm]\lambda=[/mm] 1
>  
> somit wäre ja die Windschiefe ja eigentlich belegt
>  
>  


Bezug
                                
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Mi 17.03.2010
Autor: Nehlja

Oh sorry, hinter [mm] \mu [/mm] -1/-3/2
aber wieso ist -2/2/2 falsch? ich habe gelernt, dass man um den Richtungsvektor zu erhalten, die Koordinaten von B-A rechnen muss. demnach wäre der Vektor -2/2/2
Ah, ich seh gerade ich habe ausversehen oben für B(0/4/1) angegeben. B hat die Koordinaten (0/4/2). ist es dann richtig?

Bezug
        
Bezug
Vektorenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 17.03.2010
Autor: metalschulze

Hallo,
ja stimmt. Eine leere Menge heisst aber nicht automatisch, dass die Geraden windschief sind - Stichwort parallel.
Gruss Christian

Bezug
                
Bezug
Vektorenrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Mi 17.03.2010
Autor: Nehlja

Vielen Dank!
Parallelität und Identität waren schon ausgeschlossen, weil die Richtungsvektoren linear unabhängig sind ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de