www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Vektorfeld mit LaPlace-Operato
Vektorfeld mit LaPlace-Operato < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld mit LaPlace-Operato: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 29.08.2008
Autor: Kulli1

Aufgabe
Für eine Funktion h : [mm] [1,\infty) \to \IR [/mm] ist v : [mm] \IR^{3} \to \IR^{3} [/mm] gegeben durch

[mm] v(x_{1},x_{2},x_{3}) [/mm] = [mm] \pmat{ v_{1}(x_{1},x_{2},x_{3}) \\ v_{2}(x_{1},x_{2},x_{3}) \\ v_{3}(x_{1},x_{2},x_{3}) } [/mm] = [mm] h(x_{1}+x_{2}+x_{3}) \pmat{ x_{1} \\ x_{2} \\ x_{3} } [/mm] .

a) Berechnen Sie [mm] \Delta v_{1}, \Delta v_{2},\ [/mm] Delta [mm] v_{3}. [/mm]

b) Bestimmen Sie h mit h(1) = 1 und h'(1) = 1, so dass das Vektorfeld v die Bedingung

[mm] \Delta v_{1} [/mm] + [mm] \Delta v_{2} [/mm] + [mm] \Delta v_{3} [/mm] = 0

erfüllt.

Hinweis: Machen Sie die Substitution u = [mm] x_{1}+x_{2}+x_{3}. [/mm]

Hallo,

ich habe leider Probleme den Aufgabenteil b) zu lösen und bitte daher um Hilfe

Den Aufgaben teil a) habe ich so gelöst, dass ich die Funktion v 2mal abgeleitet habe, ich habe dabei die Produktregel beachtet

Ich erhalte

[mm] \Delta [/mm] v = div(div(v)) =  [mm] \bruch{\partial^{2} h(x_{1}+x_{2}+x_{3})}{\partial x_{i}^{2}} x_{i} [/mm] + 2  [mm] \bruch{\partial h(x_{1}+x_{2}+x_{3})}{\partial x_{i}} [/mm]

Beim Aufgabenteil b) fehlt mir leider jeglicher Ansatz : /

Danke im Vorraus !

        
Bezug
Vektorfeld mit LaPlace-Operato: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 29.08.2008
Autor: MathePower

Hallo Kulli1,

> Für eine Funktion h : [mm][1,\infty) \to \IR[/mm] ist v : [mm]\IR^{3} \to \IR^{3}[/mm]
> gegeben durch
>  
> [mm]v(x_{1},x_{2},x_{3})[/mm] = [mm]\pmat{ v_{1}(x_{1},x_{2},x_{3}) \\ v_{2}(x_{1},x_{2},x_{3}) \\ v_{3}(x_{1},x_{2},x_{3}) }[/mm]
> = [mm]h(x_{1}+x_{2}+x_{3}) \pmat{ x_{1} \\ x_{2} \\ x_{3} }[/mm] .
>  
> a) Berechnen Sie [mm]\Delta v_{1}, \Delta v_{2},\[/mm] Delta [mm]v_{3}.[/mm]
>  
> b) Bestimmen Sie h mit h(1) = 1 und h'(1) = 1, so dass das
> Vektorfeld v die Bedingung
>  
> [mm]\Delta v_{1}[/mm] + [mm]\Delta v_{2}[/mm] + [mm]\Delta v_{3}[/mm] = 0
>  
> erfüllt.
>  
> Hinweis: Machen Sie die Substitution u =
> [mm]x_{1}+x_{2}+x_{3}.[/mm]
>  Hallo,
>  
> ich habe leider Probleme den Aufgabenteil b) zu lösen und
> bitte daher um Hilfe
>  
> Den Aufgaben teil a) habe ich so gelöst, dass ich die
> Funktion v 2mal abgeleitet habe, ich habe dabei die
> Produktregel beachtet
>  
> Ich erhalte
>  
> [mm]\Delta[/mm] v = div(div(v)) =  [mm]\bruch{\partial^{2} h(x_{1}+x_{2}+x_{3})}{\partial x_{i}^{2}} x_{i}[/mm]
> + 2  [mm]\bruch{\partial h(x_{1}+x_{2}+x_{3})}{\partial x_{i}}[/mm]
>  
> Beim Aufgabenteil b) fehlt mir leider jeglicher Ansatz : /

Da hilft Dir die Substitution schon weiter.

Berechne also die ersten und zweiten partiellen Ableitungen von [mm]h\left(u\left(x_{1}, \ x_{2}, \ x_{3}\right)\right)[/mm]

[mm]\bruch{\partial \ h}{\partial x_{i}}=\bruch{\partial \ h}{\partial u}*\bruch{\partial u}{\partial x_{i}}[/mm]

Nun versuche Dich an der zweiten Ableitung;

[mm]\bruch{\partial^{2} \ h}{\partial x_{i}^{2}}= \ \dots[/mm]

Setze diese partiellen Ableitungen dann in Deine gewonnene Lösung aus a) ein
und löse die entstehende DGL.


>  
> Danke im Vorraus !


Gruß
MathePower

Bezug
                
Bezug
Vektorfeld mit LaPlace-Operato: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Sa 30.08.2008
Autor: Kulli1

Danke, das hat mir auf jeden Fall schon mal weiter geholfen !

Bin mir noch etwas unsicher mit der zweifachen partiellen Ableitung. Ich reche:

[mm] \bruch{\partial h(u)}{\partial u^{2}} \bruch{\partial u^{2}}{\partial x_{i}^{2}} x_{i} [/mm]

Gehe ich jetzt Recht in der Annahme, dass ich von u² nur die x² therme ableite, also das Ergebniss wieder 1 ist ? - Weil ja kein [mm] \partial^{2} [/mm] da steht... Oder muss ich u² zweimal nach x ableiten ?

Und kann ich das [mm] x_{i} [/mm] einfach ohne Substituion hintendran stehen lassen ?

Bezug
                        
Bezug
Vektorfeld mit LaPlace-Operato: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Sa 30.08.2008
Autor: MathePower

Hallo Kulli1,

> Danke, das hat mir auf jeden Fall schon mal weiter geholfen
> !
>  
> Bin mir noch etwas unsicher mit der zweifachen partiellen
> Ableitung. Ich reche:
>  
> [mm]\bruch{\partial h(u)}{\partial u^{2}} \bruch{\partial u^{2}}{\partial x_{i}^{2}} x_{i}[/mm]
>  
> Gehe ich jetzt Recht in der Annahme, dass ich von u² nur
> die x² therme ableite, also das Ergebniss wieder 1 ist ? -
> Weil ja kein [mm]\partial^{2}[/mm] da steht... Oder muss ich u²
> zweimal nach x ableiten ?

Wir haben

[mm]h\left(u\left(x_{1},x_{2},x_{3}\right)\right)[/mm]

Dann ist

[mm]\bruch{\partial h}{\partial x_{i}}=\bruch{\partial h}{\partial u}*\bruch{\partial u}{\partial x_{i}}, \ i=1,2,3[/mm]

Nochmal abgeleitet ergibt:

[mm]\bruch{\partial^{2} h}{\partial x_{i}^{2}}=\bruch{\partial }{\partial u}\left(\bruch{\partial h}{\partial u}*\bruch{\partial u}{\partial x_{i}}\right)*\bruch{\partial u}{\partial x_{i}}+\bruch{\partial}{\partial x_{i}}\left(\bruch{\partial h}{\partial u}*\bruch{\partial u}{\partial x_{i}}\right), \ i=1,2,3[/mm]

[mm]=\bruch{\partial^{2} h}{\partial u^{2}}*\left(\bruch{\partial u}{\partial x_{i}}\right)^{2}+\bruch{\partial h}{\partial u}*\bruch{\partial^{2} u}{\partial x_{i}^{2}}, \ i=1,2,3[/mm]

> Und kann ich das [mm]x_{i}[/mm] einfach ohne Substituion hintendran
> stehen lassen ?  


Ja.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de