www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Vektorpotential
Vektorpotential < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorpotential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Sa 07.01.2012
Autor: nhard

Um eine Aufgabe zu lösen möchte ich mir ein Vektorpotential [mm] $\vec [/mm] A$ für das einfache Feld [mm] $\vec B=B\cdot\vec e_z$ [/mm] finden. Es herrscht kein E-Feld.

Nur so als Frage ob ich das richtig verstehe:
Das Vektorpotential muss den Bedingungen

[mm] $\vec E=-\nabla\phi-\bruch{1}{c}\frac{\partial \vec A}{\partial t}$ [/mm]
und
[mm] $\vec B=\nabla\times\vec [/mm] A$

entsprechen, in diesem Fall also [mm] $\frac{\partial \vec A}{\partial t}=0$ [/mm] und [mm] $\vec B=\nabla\times\vec [/mm] A$?.

Ein mögliches Vektorpotential könnte also [mm] $\vec A=-y\cdot B\cdot \vec e_x$ [/mm] sein?

vielen Dank!
lg

        
Bezug
Vektorpotential: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 So 08.01.2012
Autor: notinX

Hallo,

> Um eine Aufgabe zu lösen möchte ich mir ein
> Vektorpotential [mm]\vec A[/mm] für das einfache Feld [mm]\vec B=B\cdot\vec e_z[/mm]
> finden. Es herrscht kein E-Feld.
>  
> Nur so als Frage ob ich das richtig verstehe:
>  Das Vektorpotential muss den Bedingungen
>
> [mm]\vec E=-\nabla\phi-\bruch{1}{c}\frac{\partial \vec A}{\partial t}[/mm]

das ist die Bedingung für das elektrische Feld.

>  
> und
>  [mm]\vec B=\nabla\times\vec A[/mm]


Das ist die Definition des Vektorpotentials.

>  
> entsprechen, in diesem Fall also [mm]\frac{\partial \vec A}{\partial t}=0[/mm]
> und [mm]\vec B=\nabla\times\vec A[/mm]?.
>  
> Ein mögliches Vektorpotential könnte also [mm]\vec A=-y\cdot B\cdot \vec e_x[/mm]
> sein?

Genau.

>  
> vielen Dank!
>  lg

Gruß,

notinX

Bezug
                
Bezug
Vektorpotential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 So 08.01.2012
Autor: nhard

Alles klar.
Vielen Dank! :)

Bezug
        
Bezug
Vektorpotential: Magnetostatik
Status: (Antwort) fertig Status 
Datum: 13:53 So 08.01.2012
Autor: Marcel08

Verzeihung, du hast vollkommen Recht. Gemäß des Integralsatzes von Stokes muss es natürlich wie folgt lauten:


Die Maxwell´schen Gleichungen für den Fall der Magnetostatik lauten

(1) [mm] rot\vec{H}=\vec{J}\gdw\integral_{\partial{A}}^{}{\vec{H}*d\vec{s}}=\integral_{A}^{}{\vec{J}*d\vec{A}} [/mm] sowie

(2) [mm] div\vec{B}=0\gdw\integral_{\partial{V}}^{}{\vec{B}*d\vec{A}}=0, [/mm]

mit der Materialbeziehung [mm] \vec{B}=\mu\vec{H} [/mm] für lineares, isotropes und homogenes Material.


In Analogie zum elektrostatischen Feld, in welchem aus der Wirbelfreiheit der Skalarpotentialansatz gemäß

[mm] rot\vec{E}=\vec{0}\Rightarrow\vec{E}=-grad{\Phi} [/mm]


folgt, liefert die Quellenfreiheit des magnetostatischen Feldes

[mm] div\vec{B}=0\Rightarrow\vec{B}=rot\vec{A}, [/mm] bzw. [mm] \integral_{A}^{}{\vec{B}*d\vec{A}}=\integral_{\partial{A}}^{}{\vec{A}*d\vec{s}} [/mm]


die Möglichkeit des Vektorpotentialansatzes. Hinsichtlich deiner Aufgabe kann sich der div-Operator dabei sowohl auf ein kartesisches als auch auf ein kreiszylindrisches Koordinatensystem beziehen.



Viele Grüße, Marcel

Bezug
                
Bezug
Vektorpotential: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 14:51 So 08.01.2012
Autor: notinX

Hallo Marcel,

> Hallo!
>  
>
> Die Maxwell´schen Gleichungen für den Fall der
> Magnetostatik lauten
>
> (1)
> [mm]rot\vec{H}=\vec{J}\gdw\integral_{\partial{A}}^{}{\vec{H}*d\vec{s}}=\vec{J}[/mm]
> sowie

ich fürchte das stimmt nicht. Du hast das Oberflächenintegral nur auf der linken Seite der Gleichung angewendet - Du musst es aber natürlich auf beiden Seiten tun, dann kommt auf der rechten Seite was anderes raus.
Die Gleichung kann auch gar nicht stimmen, weil links ein Skalar und rechts ein Vektor steht.

>  
> (2)
> [mm]div\vec{B}=0\gdw\integral_{\partial{V}}^{}{\vec{B}*d\vec{A}}=0,[/mm]
>
> mit der Materialbeziehung [mm]\vec{B}=\mu\vec{H}[/mm] für lineares,
> isotropes und homogenes Material.
>  
>
> In Analogie zum elektrostatischen Feld, in welchem aus der
> Wirbelfreiheit der Skalarpotentialansatz gemäß
>  
> [mm]rot\vec{E}=\vec{0}\Rightarrow\vec{E}=-grad{\Phi}[/mm]
>  
>
> folgt, liefert die Quellenfreiheit des magnetostatischen
> Feldes
>
> [mm]div\vec{B}=0\Rightarrow\vec{B}=rot\vec{A},[/mm] bzw.
> [mm]\vec{B}=\integral_{\partial{A}}^{}{\vec{A}*d\vec{s}}[/mm]

Hier das gleiche Problem, [mm] $\vec{A}\cdot{}d\vec{s}$ [/mm] ist eine skalare Größe, [mm] $\vec{B}$ [/mm] nicht.

>  
>
> die Möglichkeit des Vektorpotentialansatzes. Hinsichtlich
> deiner Aufgabe kann sich der div-Operator dabei sowohl auf
> ein kartesisches als auch auf ein kreiszylindrisches
> Koordinatensystem beziehen.
>  
>
>
> Viele Grüße, Marcel

Gruß,

notinX

Bezug
                        
Bezug
Vektorpotential: Sorry
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 16:52 So 08.01.2012
Autor: Marcel08

Du hast vollkommen Recht. Ich habe den Beitrag nun korrigiert.



Viele Grüße, Marcel

Bezug
                
Bezug
Vektorpotential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 So 08.01.2012
Autor: notinX

Noch eine kleine Anmerkung:

>
> Die Maxwell´schen Gleichungen für den Fall der
> Magnetostatik lauten
>
> (1)
> [mm]rot\vec{H}=\vec{J}\gdw\integral_{\partial{A}}^{}{\vec{H}*d\vec{s}}=\integral_{A}^{}{\vec{J}*d\vec{A}}[/mm]
> sowie

Die rechte Seite der letzten Gleichung entsprcht gerade dem Strom durch die Fläche, es gilt also:
[mm] $\integral_{\partial{A}}^{}{\vec{H}\cdot{}d\vec{s}}=I$ [/mm] bzw.
[mm] $\integral_{\partial{A}}^{}{\vec{B}\cdot{}d\vec{s}}=\mu [/mm] I$

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de