www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorräume
Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Vektorräume - Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:16 Fr 07.04.2006
Autor: Ben2007

Aufgabe
"Es sei V ein K-Vektorraum. Zeigen Sie für bel. Vektor a aus V. Alpha aus K:

(a) 0 mal Vektor a = vektor o"

Hallo!
Also ich muss kurz erklären, das ich jetzt angefangen habe, Mathe zu studieren und nehmen als erstes Vektorräume durch - und das hatte ich noch nie. Der Rest der kommt ist okay, da kenn ich mich aus...
Jetzt haben wir einen Übungszettel bekommen, den wir lösen müssen und komm schonmal voll nicht damit klar. Jetzt habe ich so ein Buch gekauft und da verstehe ich alles, kann es aber nicht anwenden.
Jetzt meine Frage:

Ist mein Ergebnis so richtig oder fehlt was (da ich nicht weiß, was er mit "Zeigen Sie" von mir alles sehen will.....



Meine Lösung:

0 mal Va => Nullvektor
Vo => Vektor o

=> Nullvektor = Vektor o


Ist das alles oder muss ich noch was machen?

Allgemeine Frage:
Wir haben so 8 Regeln... muss ich immer alle 8 anwenden?

Sorry, wenn ich sofort so viel schreibe, aber verstehe im Moment nur Bahnhof (außer aus dem Buch das halt, was ich aber nicht in den Aufgaben verwenden kann) und das schon nach 4 Stunden :(!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Fr 07.04.2006
Autor: felixf

Hallo Ben!

> "Es sei V ein K-Vektorraum. Zeigen Sie für bel. Vektor a
> aus V. Alpha aus K:
>  
> (a) 0 mal Vektor a = vektor o"
>  Hallo!
>  Also ich muss kurz erklären, das ich jetzt angefangen
> habe, Mathe zu studieren und nehmen als erstes Vektorräume
> durch - und das hatte ich noch nie. Der Rest der kommt ist
> okay, da kenn ich mich aus...
>  Jetzt haben wir einen Übungszettel bekommen, den wir lösen
> müssen und komm schonmal voll nicht damit klar. Jetzt habe
> ich so ein Buch gekauft und da verstehe ich alles, kann es
> aber nicht anwenden.
>  Jetzt meine Frage:
>  
> Ist mein Ergebnis so richtig oder fehlt was (da ich nicht
> weiß, was er mit "Zeigen Sie" von mir alles sehen
> will.....
>  
>
>
> Meine Lösung:
>  
> 0 mal Va => Nullvektor
>  Vo => Vektor o

>  
> => Nullvektor = Vektor o

Was genau machst du da? Sind die ''=>'' Folgerungspfeile? Gleichheitszeichen? Das ''0 mal Va = Nullvektor'' ist willst du ja zeigen, also musst du das irgendwie herausbekommen. Anfangen kannst du mit der Gleichung nicht.

> Ist das alles oder muss ich noch was machen?
>  
> Allgemeine Frage:
>  Wir haben so 8 Regeln... muss ich immer alle 8 anwenden?

Nein.

Versuch das doch mal so: [mm] $0_K$ [/mm] sei die $0$ im Koerper, und [mm] $0_V$ [/mm] der Nullvektor, und $v$ ein beliebiger anderer Vektor. Du willst also [mm] $0_K \cdot [/mm] v = [mm] 0_V$ [/mm] zeigen.

Dies macht man normalerweise mit folgendem Trick: Es ist ja [mm] $0_K [/mm] + [mm] 0_K [/mm] = [mm] 0_K$. [/mm] (Da [mm] $0_K$ [/mm] das additiv neutrale Element im Koerper ist.) Also ist [mm] $0_K \cdot [/mm] v = [mm] (0_K [/mm] + [mm] 0_K) \cdot [/mm] v$. Jetzt hast du unter deinen acht Regeln sicher auch ein passendes Distributivgesetzt, das dir sagt, dass [mm] $(0_K [/mm] + [mm] 0_K) \cdot [/mm] v = [mm] 0_K \cdot [/mm] v + [mm] 0_K \cdot [/mm] v$ ist.

Du hast jetzt also [mm] $0_K \cdot [/mm] v + [mm] 0_K \cdot [/mm] v = [mm] 0_K \cdot [/mm] v = [mm] 0_V [/mm] + [mm] 0_K \cdot [/mm] v$ (die letzte Gleichheit gilt, da [mm] $0_V$ [/mm] das additiv neutrale Element im Vektorraum ist; das ist auch eine deiner Regeln nehme ich mal an).

Jetzt hast du sicher noch eine Regel, dass es zu jedem Vektor $w$ einen Vektor $-w$ gibt mit $w + (-w) = [mm] 0_V$. [/mm]

Wenn du das jetzt anwendest, bekommst du (zusammen mit dem Assoziativgesetz fuer die Addition von Vektoren): [mm] $0_K \cdot [/mm] v = [mm] 0_K \cdot [/mm] v + [mm] (0_K \cdot [/mm] v + [mm] -(0_K \cdot [/mm] v)) = [mm] (0_K \cdot [/mm] v + [mm] 0_K \cdot [/mm] v) + [mm] -(0_K \cdot [/mm] v) = [mm] (0_V [/mm] + [mm] 0_K \cdot [/mm] v) + [mm] -(0_K \cdot [/mm] v) = [mm] 0_V [/mm] + [mm] (0_K \cdot [/mm] v + [mm] -(0_K \cdot [/mm] v)) = [mm] 0_V [/mm] + [mm] 0_V [/mm] = [mm] 0_V$. [/mm]

Ueberleg dir mal bei jedem Gleichheitszeichen hier genau, warum es nach deinen acht Regeln gilt (bzw. nach welcher/welchen davon genau)!

LG Felix


Bezug
                
Bezug
Vektorräume: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 07.04.2006
Autor: Ben2007

Danke...
jetzt ist der groschen gefallen...auch bezüglich der vorgehensweise, die ich vorher nicht gecheckt habe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de