www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorräume
Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Mo 25.09.2006
Autor: Moe007

Hallo,
mir fallen keine Beispiele ein zu folgenden Problemen, ich hoffe, es kann mir jemand weiter helfen.
a) Finde ein Beispiel für ein [mm] \IR^{2}-Vektorraum [/mm]
b) Finde ein Beispiel für ein [mm] \IC-Vektorraum [/mm]

Mir fallen da keine Beispiele, wo alle Vektorraumaxiome gelten.

Viele Grüße,
Moe


        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Mo 25.09.2006
Autor: mathmetzsch

Hallo,

> Hallo,
>  mir fallen keine Beispiele ein zu folgenden Problemen, ich
> hoffe, es kann mir jemand weiter helfen.
>  a) Finde ein Beispiel für ein [mm]\IR^{2}-Vektorraum[/mm]

Ein anschaulicher Vektorraum ist die 2-dimensionale Euklidische Ebene [mm] \IR^{2} [/mm] mit den Pfeilklassen (Verschiebungen) als Vektoren und den reellen Zahlen als Skalaren.

>  b) Finde ein Beispiel für ein [mm]\IC-Vektorraum[/mm]

Wie wärs mit dem Vektorraum der Funktionen [mm] f:\IC\to\IC [/mm] ?

>  
> Mir fallen da keine Beispiele, wo alle Vektorraumaxiome
> gelten.
>  
> Viele Grüße,
>  Moe
>  

VG Daniel

Bezug
                
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Mo 25.09.2006
Autor: Moe007

Hi Daniel,
vielen Dank für die schnelle Antwort. Hab noch eine Frage:

>  
> >  b) Finde ein Beispiel für ein [mm]\IC-Vektorraum[/mm]

>  
> Wie wärs mit dem Vektorraum der Funktionen [mm]f:\IC\to\IC[/mm] ?


Das ist auch ein unendlicher Vektorraum oder? Gibs auch einen der endlich ist?

Bezug
                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mo 25.09.2006
Autor: henniez-swisswater

Ja, nämlich der Vektorraum C mit den Basisvektoren (1,0), (0,i) so lässt sich jede komplexe Zahl als linear Kombination der beiden Basisvektoren darstellen. Somit ist der Voktorraum endlichdimensional, nämlich 2 dimensional.

mfg henniez

Bezug
        
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mo 25.09.2006
Autor: Moe007

Hallo.
ich hab noch eine Verständnisfrage bzgl. Vektorräumen und Untervektorräumen.
Kann man sagen, dass jeder Untervektorraum ein Vektorraum ist, aber nicht umgekehrt oder?
Oder sind alle Vektorräume auch Untervektorräume?

Gruß, Moe

Bezug
                
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mo 25.09.2006
Autor: mathmetzsch

Hallo Moe007,

also jeder Untervektorraum ist selbst auch ein Vektorraum. Natürlich gilt das auch umgekehrt. Das kommt auf die Definition an, aber i.d.R. definiert man ja: Ist V ein K-Vektorraum, so bildet eine Teilmenge [mm] U\subseteq [/mm] V einen Untervektorraum, wenn die folgenden Bedingungen erfüllt sind: ...!
(nach []Wikipedia-Artikel)

Also ist jeder Vektorraum ein Untervektorraum von sich selbst!

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de