www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mo 20.02.2006
Autor: sara_20

Aufgabe
Seien V und V' Vektorraeume auf Feld K, und N Unterraum von V.
a) Ist die Menge aller linearen Abbildungen [mm] l\in(V,V'), [/mm] so dass Ker(l)=N ist, Unterraum von Hom(V,V')?

b) Zu beweisen ist dass die Menge aller linearen Abbildungen von Hom(V,V') dessen Ker N enthaelt, Unterraum  des Raumes Hom(V,V') ist.

c) Sei T der Unterraum von b). Beweise T [mm] \cong [/mm] Hom(V/N,V')
d) Finde dim(T) wenn dimV=n, dimV'=m und dimN=k

also, bei d) ist es da: dimT=(n-k)*m ???
Die meisten Schwierigkeiten habe ich unter b) und c).
Bei c) weiss ich nicht welches Hom ich defienieren muss, so dass es bijektiv ist. Es ist mir klar dass es von V/N nach V' gehen muss, weiss aber nichts anderes.

Kann mir jemad helfen diese Aufgabe zu verstehen?

Ich habe diese Frage in keinen anderen Foren gestellt. (Bin euch treu. :-))

        
Bezug
Vektorraum: a) und b) geloesst?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Mo 20.02.2006
Autor: sara_20

Also unter a) und b) habe ich es geschafft zu loesen. Unter a) habe ich zwei Faelle:
der erste Fall ist wenn N=V ist, dann ist O Abbildung, also lineare Abbildung die alle x in 0 abbildet der Unterraum von Hom(V,V').
im zweiten Fall wenn N nicht [mm] \subset [/mm] V ist die Menge T (die Menge aller linearen Abbildungen so dass Ker(l)=N ist) nicht Unterraum von Hom(V,V') denn da ist auch nicht die O-Abbildung (die das neutale Element ist) nicht in T.

b) nun sieht man dass der erste Fall unter a) ein Spezialfall dessen ist.
1) [mm] O\in [/mm] T
2) (f+g)(x)=f(x)+g(x)=0+0=0, also f+g [mm] \in [/mm] T
3) [mm] \alfa \in [/mm] K, [mm] f\in [/mm] T
[mm] \alfa f(x)=\alfa [/mm] *0=0, also [mm] \alfa f\in [/mm] T

Ich hoffe dass ich das richtig gemacht habe.

Habe aber trotzdem Schwierigkeiten bei c)

Bezug
        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 05:57 Di 21.02.2006
Autor: mathiash

Hallo und guten Morgen,

also Dein Argument zu (a) ist richtig.

Zu (b): Ist Unterraum, da er die 0 (Null-Abbildung) enthaelt und abgeschlossen unter + ist
(das hattest Du wohl auch schon geschrieben, nicht wahr ?).

Zu (c) Sei also [mm] T=\{f\colon V\to V'\: |\: f\:\: linear,\:\: N\subseteq \: Kern(f)\} [/mm]

Beh.:  [mm] T\:\cong\: Hom(V\slash [/mm] N,V')

Also dass man auf natuerliche Weise eine Abbildung [mm] T\to\: Hom(V\slash [/mm] N,V') hat, sollte klar sein, oder ?

Denn bezeichne zu [mm] v\in V\:\:\: [v]\: [/mm] die Äquivalenzklasse von v modulo N, d.h.

[v] [mm] :=\{u\in V\: |\: u-v\in N\}, [/mm]

so ist diese Abbildung gegeben durch

[mm] f\mapsto f',\:\; f'\colon V\slash N\to V',\: [/mm] f'([v]) :=f(v)

Diese Abbildung ist wohldefiniert, denn falls [v]=[u] gilt, so heisst das per definitionem nichts anderes, als dass
[mm] v-u\in [/mm] N ist, also f(v-u)=0 und wegen der Linearitaet von f somit f(u)=f(v).

Nun muessen wir zeigen, dass diese Abbildung  [mm] {\mathcal F}\colon T\to Hom(V\slash [/mm] N,V') ein Isomorphismus ist.

Sie ist surjektiv:
Sei  [mm] F\colon V\slash N\to [/mm] V' eine lineare Abbildung (also ein Element von [mm] Hom(V\slash [/mm] N,V')).
Zu zeigen: Es gibt [mm] f\in [/mm] T, welches unter obiger Abbildung  [mm] {\mathcal F} [/mm] auf F abgebildet wird.

Wir definieren [mm] f\in [/mm] T durch

f(v) := F([v]).

Dieses f ist linear, wie man sich leicht klar macht. Es gilt [mm] f\in [/mm] T, denn sei [mm] v\in [/mm] N, dann
ist [v]=[0] und f(v)=F([v])=F([0])= 0   (letzteres die 0 in V').

Es gilt weiter, dass  [mm] {\mathcal F}(f)=F, [/mm] denn per definitionem von [mm] {\mathcal F} [/mm] gilt ja
fuer alle [mm] [v]\in V\slash [/mm] N

[mm] {\mathcal F}([v]) [/mm] = f(v)  und nach Def. von f gilt f(v)=F([v]), somit insgesamt [mm] {\mathcal F}(f)=F. [/mm]

Die Abbildung [mm] {\mathcal F} [/mm] ist auch injektiv:
Angenommen [mm] {\mathcal F}(f)={\mathcal F}(g) [/mm] fuer zwei Abbildungen [mm] f,g\in [/mm] T. Zu zeigen: f=g.

Es ist fuer alle [mm] v\in [/mm] V

f(v) =  [mm] {\mathcal F} [/mm] (f) [mm] ([v])\:\:\:\: (nach\: Definition\:\: von\:\: {\mathcal F} [/mm]
      
       =  [mm] {\mathcal F} [/mm] (g) [mm] ([v])\:\:\:\: (nach\: Annahme\:\: {\mathcal F}(f)={\mathcal F}(g)) [/mm]

       =  [mm] g(v)\:\:\:\: (nach\:\: [/mm] Definition [mm] \:\: [/mm] von [mm] \:\: {\mathcal F}(g)) [/mm]

also insgesamt f=g.

Somit ist (c) gezeigt.

Zu (d): Es ist [mm] dim(V\slash [/mm] N)=dim(V)-dim(N) und allgemein

dim(Hom(U,W))= [mm] dim(U)\cdot [/mm] dim(W).

Gruss in die Ferne,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de