www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum, Unterraum, Bild
Vektorraum, Unterraum, Bild < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum, Unterraum, Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 02.11.2008
Autor: Englein89

Hallo,

ich kann mit diesem beiden Begriffen und den reinen allgemeinen Definitionen leider überhaupt nichts anfangen. Kann mir das jemand versuchen zu erklären? Ich wär super dankbar, meine Lerngruppe ebenso!

Weitere unbekannte Begriffe: Dimension, Basis (zu einem Kern), Spann.

        
Bezug
Vektorraum, Unterraum, Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 So 02.11.2008
Autor: angela.h.b.


> Hallo,
>  
> ich kann mit diesem beiden Begriffen und den reinen
> allgemeinen Definitionen leider überhaupt nichts anfangen.
> Kann mir das jemand versuchen zu erklären? Ich wär super
> dankbar, meine Lerngruppe ebenso!

Hallo,

für einen Vektorraum brauchst Du folgende Zutaten:

eine Menge V, einen Körper K, eine Verknüpfung +, welche jeweils zwei Elemente aus V miteinander zu einem Element aus V verknüpft , und eine Verknüpfung $ *, $ welche jeweils ein Körperelement und ein Element aus V zu einem Element aus V verknüpft.

Wenn diese Verknüpfungen den Vektorraumaxiomen folgen, so nennt man V einen Vektorraum über K.


Ein Untervektorraum U eines Vektorraumes V ist eine Teilmenge von V, welche (mit denselben Verknüpfungen) auch einen VR bildet. Sozusagen ein Vektorraum im Vektorraum. (Wie 'ne russische Puppe).

Wenn das klar ist, solltest Du unbedingt den Begriff Basis eines Vektorraumes nacharbeiten.

Was ist das? Ein linear unabhängiges Erzeugendensystem.

Linear unabhängig und Erzeugendensystem nacharbeiten.

Spann einer Menge von Vektoren: die Menge aller Linearkombinationen, die man aus diesen Vektoren bilden kann.

Bild einer Matrix A: der Vektorraum, der von den Spaltenvektoren erzeugt wird. (Das ist ein VR)

Kern: die Menge aller Vektoren x, die durch Multiplikation mit A auf den Nullvektor abgebildet werden, für die also Ax=0 ist.
Auch der Kern ist ein vektorraum, hat also eine Basis.

Ich rate Euch dringend, sofern Ihr Mathematik studiert, diese Begriffe nachzuarbeiten und die Definitionen zu lernen. Sonst könnt Ihr einpacken!

Wenn Ihr was nicht versteht, könnt Ihr gern nachfragen, aber das Lernen der Definitionen kann Euch keiner abnehmen.

Gruß v. Angela




>  
> Weitere unbekannte Begriffe: Dimension, Basis (zu einem
> Kern), Spann.


Bezug
                
Bezug
Vektorraum, Unterraum, Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 02.11.2008
Autor: Englein89

Nein, wir studieren nicht Mathe sondern BWL und müssen zwangsweise 1 Semester Mathegrundlagen pauken.

Erzeugendensystem sagt mir nichts, machen wir nicht. Gibtsd ne andere Erklärung?

Bezug
                        
Bezug
Vektorraum, Unterraum, Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 02.11.2008
Autor: angela.h.b.


> Nein, wir studieren nicht Mathe sondern BWL und müssen
> zwangsweise 1 Semester Mathegrundlagen pauken.
>  
> Erzeugendensystem sagt mir nichts, machen wir nicht. Gibtsd
> ne andere Erklärung?

Hallo,

statt [mm] "(b_1, b_2, b_3, b_4) [/mm] ist ein Erzeugendensystem von V " kann man auch sagen "V ist gleich dem Spann von [mm] (b_1, b_2, b_3, b_4)". [/mm]

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de