www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorraum Vektoren
Vektorraum Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Do 05.01.2006
Autor: tommy1234

Aufgabe
Sei K ein Körper und V ein L-Vektorraum mit |V| [mm] \not= [/mm] 1. Man zeige die Äquivalentder folgenden Aussagen:

(a)  [mm] 1_{K} [/mm] +  [mm] 1_{K} [/mm] =  [mm] 0_{K} [/mm]
(b)  [mm] \forall [/mm] v [mm] \in [/mm] V   v + v = [mm] 0_{V} [/mm]
(c)  [mm] \exists [/mm] v [mm] \in [/mm] V  [mm] \backslash {0_{K}} [/mm]  v + v = [mm] 0_{V} [/mm]

Hallo,

ich habe da mal ein paar Fragen.  Also ich verstehe diese Aufgabe eigentlich nicht. Mir ist nur klar, dass [mm] 1_{K} [/mm] das neutrale Element und [mm] 0_{K} [/mm] den Nullvektor ist.  Doch wie komme ich nun weiter???

Bei (a) würde ich sagen, muss [mm] 1_{K} [/mm] = 0 sein, denn 0 + 0 = 0. Aber ist das alles? Und wie kann ich das ganze denn andersherum beweisen?
Warum ist v + v = [mm] 0_{K}. [/mm]

Ich bin echt am verzweifeln. Bitte helft mir.

        
Bezug
Vektorraum Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Do 05.01.2006
Autor: piet.t

Hallo Tommy,

zur Notation würde ich sagen:
[mm] 1_K [/mm] liegt in K und ist das neutrale Element der Multiplikation
[mm] 0_K [/mm] liegt in K und ist das neutrale Element der Addition
[mm] 0_V [/mm] liegt in V und ist der Nullvektor
Bei (c) hast Du wahrscheinlich einen Tippfehler, das muss wohl [mm]\exists v \in V \setminus 0_{\bf{V}} \ldots[/mm] heissen.

Und jetzt zum eigentlichen Witz der Aufgabe:
Bei a) gilt sicher, dass [mm] 1_K \ne 0_K [/mm] , denn in einem Körper müssen 0 und 1 immer zwei verschiedene Elemente sein (0 gehört ja gar nicht zur multiplikativen Gruppe von K, kann also auch nicht deren Einselement sein). Allerdings verbieten die Körperaxiome nirgends, dass 1+ 1 = 0 gelten könnte. (a) macht also eine gewisse Aussage über den Grundkörper des Vektorraums.
Nun ist die Äquivalenz der drei Aussagen zu zeigen. D.h. wenn eine dr Aussagen wahr ist (egal welche), dann müssen auch die anderen beiden wahr sein.
Beweistechnisch nimmst Du jetzt also am besten an, dass (a) wahr ist und zeigst, dass dann (b) gilt, d.h. Du zeigst (a)=>(b). Anschließend zeigst Du noch (b) => (c) und (c) => (a) und hast damit die gleichwertigkeit der drei Aussagen gezeigt.

Versuch einfach mal, wie weit Du damit kommst.....

Gruß

piet

Bezug
                
Bezug
Vektorraum Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Do 05.01.2006
Autor: tommy1234

Vielen Dank schon mal. Jetzt wird mir die Aufgabe auch schon klarer. Aber wie soll ich aus einem Zusammenhang in (a), der ja nur auf K bezogen ist, die Richtigkeit von (b) zeigen, die ja nur auf V bezogen ist. Da fehlt mir noch der kleine Zusammenhang.
Vielleicht könntest du mir da ja mal einen kleinen Denkanstoss geben. Und was soll das ganze mit |V| [mm] \not= [/mm] 1???

Vielen Dank.
Gruß, Tommy

Bezug
                        
Bezug
Vektorraum Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Do 05.01.2006
Autor: felixf


> Vielen Dank schon mal. Jetzt wird mir die Aufgabe auch
> schon klarer. Aber wie soll ich aus einem Zusammenhang in
> (a), der ja nur auf K bezogen ist, die Richtigkeit von (b)
> zeigen, die ja nur auf V bezogen ist. Da fehlt mir noch der
> kleine Zusammenhang.

Nun, $v = [mm] 1_K [/mm] v$ fuer alle $v [mm] \in [/mm] V$ :-)

>  Vielleicht könntest du mir da ja mal einen kleinen
> Denkanstoss geben. Und was soll das ganze mit |V| [mm]\not=[/mm]
> 1???

Also wenn $|V| = 1$ ist, dann gilt natuerlich immer $v + v = 0$ fuer $v [mm] \in [/mm] V$, egal ob im Koerper [mm] $1_K [/mm] + [mm] 1_K [/mm] = [mm] 0_K$ [/mm] gilt oder nicht. Aber sobald es einen Vektor $v [mm] \in [/mm] V$ mit $v [mm] \neq [/mm] 0$ gibt wirds interessant...

LG & HTH, Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de