www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorraumaxiome
Vektorraumaxiome < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraumaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Fr 03.02.2006
Autor: AriR

(Frage zuvor nicht gestellt)

Hey Leute, wir haben als kommentar zu den Vektorraumaxiomen aufgeschrieben, dass es [mm] \lamda [/mm] * v gibt aber nicht v* [mm] \lambda [/mm] für [mm] \lambda \in [/mm] K und [mm] v\in [/mm] V, wobei V ein Vektorraum ist.

normal multipliziert man einen Vektor mit einem skalar, indem man jede komponente mit dem skalr multipliziert, ist es dann nicht egal, ob man das skalar von links oder von rechts mit dem vektor multipliziert?

hoffe jemand antwortet =) gruß ari

        
Bezug
Vektorraumaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 03.02.2006
Autor: mathiash

Hallo ari,
und hallo Freunde gepflegter skalarer Multiplikation,

also es verhaelt sich so: Vektoren sind nicht a priori Tupel, sondern einfach Elemente
eines Vektorraumes, und das ist halt mal per definitionem eine Menge V zusammen
mit zwei Operationen [mm] +\colon V\times V\to [/mm] V
und [mm] \cdot\colon K\times V\to [/mm] V, wobei K der zugrundeliegende Koerper ist.

Sobald Du eine Basis fuer V waehlst, kannst Du bezueglich dieser Basis die Vektoren als
Tupel schreiben, deren Eintraege dann Elemente aus K sind, und dann ist es wegen der Kommutativitaet der Multiplikation in K egal, ob man einen einzelnen Eintrag als
[mm] \lambda\cdot [/mm] a oder [mm] a\cdot\lambda [/mm] schreibt [mm] (a,\lambda\in [/mm] K).

Aber man soll sich Vektoren nicht immer nur als Tupel darstellen, sondern einfach als Elemente eines Vektorraumes, die man bei Wahl einer Basis bezueglich dieser durch Tupel darstellen kann. Denk zum Beispiel an Funktionenräume wie den
Raum [mm] Abb(\R,\IR) [/mm] als einen unendlichdimensionalen Vektorraum. Da kannst Du fuer kein Element die Darstellung in Tupelschreibweise explizit bis zum Ende hinschreiben.

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de