www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraumaxiome
Vektorraumaxiome < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraumaxiome: Kann Axiom nicht nachweisen
Status: (Frage) beantwortet Status 
Datum: 08:50 Do 06.01.2011
Autor: BarneyS

Aufgabe
Zeigen Sie, dass die Menge [mm] $\IR^{+}$ [/mm] aller positiven reellen Zahlen mit den Verknüpfungen:
[mm] $x\oplus [/mm] y:=xy$ und [mm] $\lambda \circ x:=x^{\lambda}$ [/mm]
mit $x,y>0$ und [mm] $\lambda \in \IR$ [/mm] ein Vektorraum ist.


Hallo,

zu zeigen, dass die Menge bzgl. der Verknüpfung [mm] $\oplus$ [/mm] eine kommutative Gruppe ist, ist einfach.

Ein Problem habe ich allerdings mit folgendem Vektorraumaxiom:

[mm] \forall \lambda, \mu \in \IR \forall x \in V (\lambda \oplus \mu) \circ x = \lambda \circ x \oplus \mu \circ x [/mm] , denn

[mm] (\lambda \oplus \mu) \circ x = (\lambda \mu) \circ x = x^{\lambda \mu} = x^{\lambda \oplus \mu} [/mm]

[mm] \not= x^{\lambda + \mu} = x^{\lambda} * x^{\mu} = x^{\lambda} \oplus x^{\mu} = \lambda \circ x \oplus \mu \circ x[/mm]

Damit habe ich doch widerlegt, dass die Menge ein Vektorraum ist, oder?

Danke und Grüße,
B

        
Bezug
Vektorraumaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Do 06.01.2011
Autor: weightgainer

Hi,

> Zeigen Sie, dass die Menge [mm]\IR^{+}[/mm] aller positiven reellen
> Zahlen mit den Verknüpfungen:
>  [mm]x\oplus y:=xy[/mm] und [mm]\lambda \circ x:=x^{\lambda}[/mm]
>  mit [mm]x,y>0[/mm]
> und [mm]\lambda \in \IR[/mm] ein Vektorraum ist.
>  Hallo,
>
> zu zeigen, dass die Menge bzgl. der Verknüpfung [mm]\oplus[/mm]
> eine kommutative Gruppe ist, ist einfach.
>  
> Ein Problem habe ich allerdings mit folgendem
> Vektorraumaxiom:
>  
> [mm]\forall \lambda, \mu \in \IR \forall x \in V (x\oplus y) \circ x = \lambda \circ x \oplus \mu \circ x[/mm]
> , denn
>  
> [mm](x\oplus y) \circ x = (\lambda \mu) \circ x = x^{\lambda \mu} = x^{\lambda \oplus \mu}[/mm]
>  
> [mm]\not= x^{\lambda + \mu} = x^{\lambda} * x^{\mu} = x^{\lambda} \oplus x^{\mu} = \lambda \circ x \oplus \mu \circ x[/mm]
>  
> Damit habe ich doch widerlegt, dass die Menge ein
> Vektorraum ist, oder?
>  

Ich war erst geneigt, dir zuzustimmen und dachte, dass da jemand bei der Aufgabenstellung einfach nicht an das Potenzgesetz gedacht hat.

Aaaaber dann hab ich nochmal überlegt und festgestellt, dass das "+" in dieser Regel tatsächlich ja ein "+" im Körper ist, denn dort werden ja 2 Skalare addiert, du darfst hier nicht die Addition aus dem Vektorraum nehmen. Nur die Multiplikation ist ja als neue skalare Multiplikation definiert.

Und dann stimmt es auch.


> Danke und Grüße,
>  B

lg weightgainer

Bezug
                
Bezug
Vektorraumaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:24 Do 06.01.2011
Autor: BarneyS


> Hi,
>  
> > Zeigen Sie, dass die Menge [mm]\IR^{+}[/mm] aller positiven reellen
> > Zahlen mit den Verknüpfungen:
>  >  [mm]x\oplus y:=xy[/mm] und [mm]\lambda \circ x:=x^{\lambda}[/mm]
>  >  mit
> [mm]x,y>0[/mm]
> > und [mm]\lambda \in \IR[/mm] ein Vektorraum ist.
>  >  Hallo,
> >
> > zu zeigen, dass die Menge bzgl. der Verknüpfung [mm]\oplus[/mm]
> > eine kommutative Gruppe ist, ist einfach.
>  >  
> > Ein Problem habe ich allerdings mit folgendem
> > Vektorraumaxiom:
>  >  
> > [mm]\forall \lambda, \mu \in \IR \forall x \in V (\lambda \oplus \mu) \circ x = \lambda \circ x \oplus \mu \circ x[/mm]
> > , denn
>  >  
> > [mm](\lambda \oplus \mu) \circ x = (\lambda \mu) \circ x = x^{\lambda \mu} = x^{\lambda \oplus \mu}[/mm]
>  
> >  

> > [mm]\not= x^{\lambda + \mu} = x^{\lambda} * x^{\mu} = x^{\lambda} \oplus x^{\mu} = \lambda \circ x \oplus \mu \circ x[/mm]
>  
> >  

> > Damit habe ich doch widerlegt, dass die Menge ein
> > Vektorraum ist, oder?
>  >  
>
> Ich war erst geneigt, dir zuzustimmen und dachte, dass da
> jemand bei der Aufgabenstellung einfach nicht an das
> Potenzgesetz gedacht hat.
>  
> Aaaaber dann hab ich nochmal überlegt und festgestellt,
> dass das "+" in dieser Regel tatsächlich ja ein "+" im
> Körper ist, denn dort werden ja 2 Skalare addiert, du
> darfst hier nicht die Addition aus dem Vektorraum nehmen.
> Nur die Multiplikation ist ja als neue skalare
> Multiplikation definiert.
>  
> Und dann stimmt es auch.
>  
>
> > Danke und Grüße,
>  >  B
>
> lg weightgainer

Hallo weightgainer,

danke für deiner Antwort. Darüber habe ich auch schon nachgedacht. Allerdings finde ich es ein wenig verwirrend.
Man muss also stattdessen folgendes zeigen:

[mm]\forall \lambda, \mu \in \IR \forall x \in V (\lambda + \mu) \circ x = \lambda \circ x \oplus \mu \circ x[/mm]

Beweis:

[mm](\lambda + \mu) \circ x = x^{\lambda + \mu} = x^{\lambda}*x^{\mu} = x^{\lambda} \oplus x^{\mu} = \lambda \circ x \oplus \mu \circ x[/mm] ?



Bezug
                        
Bezug
Vektorraumaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 06.01.2011
Autor: angela.h.b.


> > Hi,
>  >  
> > > Zeigen Sie, dass die Menge [mm]\IR^{+}[/mm] aller positiven reellen
> > > Zahlen mit den Verknüpfungen:
>  >  >  [mm]x\oplus y:=xy[/mm] und [mm]\lambda \circ x:=x^{\lambda}[/mm]
>  >  >

>  mit
> > [mm]x,y>0[/mm]
> > > und [mm]\lambda \in \IR[/mm] ein Vektorraum ist.

> [...]

> Man muss also stattdessen folgendes zeigen:
>  
> [mm]\forall \lambda, \mu \in \IR \forall x \in V (\lambda + \mu) \circ x = \lambda \circ x \oplus \mu \circ x[/mm]

Hallo,

genau.

>
> Beweis:
>  
> [mm](\lambda + \mu) \circ x = x^{\lambda + \mu} = x^{\lambda}*x^{\mu} = x^{\lambda} \oplus x^{\mu} = \lambda \circ x \oplus \mu \circ x[/mm]

Richtig.

Gruß v. Angela


> ?
>  
>  


Bezug
                                
Bezug
Vektorraumaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Do 06.01.2011
Autor: BarneyS

Ok, danke erstmal für die Hilfe.

Mit dem nächsten Axiom habe ich allerdings wieder ein Problem.
Ich finde es schwierig zu entscheiden, wo ich die skalare Multiplikation und wo die in der Aufgabenstellung definierte Verknüpfung verwenden soll?

Allgemein lautet das Axiom so:

[mm] \forall \lambda, \mu \in \IR \forall x \in V[/mm]

[mm] \lambda(\mu x) = (\lambda \mu) x =: \lambda \mu x [/mm]

Wie muss es denn jetzt für diese Aufgabe ausgedrückt werden?
Wenn man es wie folgt formuliert,

[mm] \lambda \circ (\mu \circ x) = (\lambda \circ \mu) \circ x =: \lambda \circ \mu \circ x [/mm]

kommt man wieder zu einem Widerspruch.

So

[mm] \lambda \circ (\mu \circ x) = (\lambda * \mu) \circ x [/mm]

würde es funktionieren. Was ist nun richtig und warum?

Ich nehme an letzteres, da immer wenn sich die Verknüpfung nur auf Skalare bezieht, die normale Multiplikation angewendet wird?

Bezug
                                        
Bezug
Vektorraumaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Do 06.01.2011
Autor: fred97

Der zugrunde liegende Körper ist [mm] \IR [/mm] (mit den üblichen Verknüpfungen "+" und ".")


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de