www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorrechnung
Vektorrechnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Matrizen
Status: (Frage) beantwortet Status 
Datum: 02:56 Sa 23.10.2004
Autor: Reaper

Wie schauen n  [mm] \times [/mm] 1 bzw. 1  [mm] \times [/mm] m Matrizen aus?

Def.: Eine gerichtete Strecke ist ein Paar (P,Q) von Elementen P,Q  [mm] \in [/mm]  
[mm] \IR [/mm] ^3. Die Elemente des [mm] \IR [/mm] ^3 heißen Punkte. Eine gerichtete Strecke kann also als ein  6- Tupel  [mm] \in \IR [/mm] ^6 aufgefasst werden.

Warum besteht das Paar nur aus 2 Elementen? Ich dachte [mm] \IR [/mm] ^3 setzte
sich aus 3 Elementen (a,b,c) zusammen?
Warum 6- Tupel? (a,b,c,d,e,f) kann man sich doch gar nicht mehr vorstellen?

        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:36 Sa 23.10.2004
Autor: Stefan

Hallo Reaper!

> Wie schauen n  [mm]\times[/mm] 1 bzw. 1  [mm]\times[/mm] m Matrizen aus?

Eine $n [mm] \times [/mm] m$-Matrix besteht aus $n$ Zeilen und $m$ Spalten.

Daher besteht eine $n [mm] \times [/mm] 1$ Matrix aus $n$ Zeilen und einer Spalte und hat somit die Gestalt:

[mm] $\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$. [/mm]

Entsprechend besteht eine $1 [mm] \times [/mm] m$-Matrix aus einer Zeile und $m$ Spalten und hat somit die Gestalt

[mm] $\begin{pmatrix} a_1 & a_2 & \cdots & a_m \end{pmatrix}$. [/mm]

> Def.: Eine gerichtete Strecke ist ein Paar (P,Q) von
> Elementen P,Q  [mm]\in[/mm]  
> [mm]\IR[/mm] ^3. Die Elemente des [mm]\IR[/mm] ^3 heißen Punkte.

Also: Wir haben ein Paar von Punkten, die beide Elemente des [mm] $\IR^3$ [/mm] sind, zum Beispiel

$(P,Q) = [mm] \left( (1,2,3), (4,6,9) \right)$, [/mm]

> Eine
> gerichtete Strecke kann also als ein  6- Tupel  [mm]\in \IR[/mm] ^6
> aufgefasst werden.

Ja, da wir zwei Punkte aus dem [mm] $\IR^3$ [/mm] haben, also insgesamt $2 [mm] \cdot [/mm] 3 = 6$ Koordinaten.

Oben könnten wir also $(P,Q)$ mit dem $6$-Tupel $(1,2,3,4,6,9)$ identifizieren.

> Warum besteht das Paar nur aus 2 Elementen? Ich dachte [mm]\IR[/mm]
> ^3 setzte
> sich aus 3 Elementen (a,b,c) zusammen?
>  Warum 6- Tupel?

Ich denke das habe ich jetzt alles ausführlichst erklärt und sollte klar sein.

$(a,b,c,d,e,f)$ kann man sich doch gar nicht

> mehr vorstellen?

Nein, aber das muss man ja auch nicht. Du hast ja die Interpretation als gerichtete Strecke zwischen $(a,b,c)$ und $(d,e,f)$, und schreibst es in diesem Falle nur der Einfachheit und Übersichtlichkeit halber als $6$-Tupel auf.

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de