www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Verallgemeinerte Bernoulli Ung
Verallgemeinerte Bernoulli Ung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgemeinerte Bernoulli Ung: Beweis, Idee
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 10.03.2014
Autor: klmn

Aufgabe
Beweis folgender Ungleichung

Ich habe irgendwie null Ahnung wie ich da ran gehen sollte.. Mit Induktion oder mit dem Binomischen Lehrsatz…

Wäre sehr glücklich , wenn ihr mir paar Tipps geben könntet..

[mm] \summe_{k=0}^{n} ((n*x)/k)^k \le (1+x)^n \le \summe_{k=0}^{n} ((e*n*x)/k)^k [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verallgemeinerte Bernoulli Ung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mo 10.03.2014
Autor: DieAcht

Hallo klmn,


Wir freuen uns übrigens auch über eine nette Begrüßung.

> Beweis folgender Ungleichung
>
> Ich habe irgendwie null Ahnung wie ich da ran gehen
> sollte.. Mit Induktion oder mit dem Binomischen Lehrsatz…

Probieren. ;-)

> Wäre sehr glücklich , wenn ihr mir paar Tipps geben
> könntet..

Okay.

>  [mm]\summe_{k=0}^{n} ((n*x)/k)^k \le (1+x)^n \le \summe_{k=0}^{n} ((e*n*x)/k)^k[/mm]

Falls du die Ungleichung nicht für alle [mm] x\in\IR [/mm] zeigen müsst,
sondern zum Beispiel für alle [mm] x\in\IR [/mm] mit [mm] $x\ge [/mm] -1$, dann kannst
du auch die Bernoullische Ungleichung benutzen. Ansonsten
würde ich Induktion verwenden oder/und den binomischen Lehr-
satz für den mittleren Term benutzen. Zeige also:

      [mm] \summe_{k=0}^{n} ((n*x)/k)^k \le (1+x)^n [/mm] und [mm] (1+x)^n \le \summe_{k=0}^{n} ((e*n*x)/k)^k [/mm]

      [mm] \Rightarrow [/mm] Behauptung.


Gruß
DieAcht  

Bezug
                
Bezug
Verallgemeinerte Bernoulli Ung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mo 10.03.2014
Autor: klmn

Hallo :-) Tut mir leid bin leicht unter Stress.. Also erstmals vielen Dank für deine Antwort… ich muss die Ungleichung für x>0 zeigen und habe die mittlere Gleichung umgeformt (binomialkoeff.) und komm trotzdem nicht weiter.. aber trotzdem vielen Dank

Bezug
                        
Bezug
Verallgemeinerte Bernoulli Ung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mo 10.03.2014
Autor: DieAcht

Hallo nochmal,


Stell deine Fragen auch bitte als Fragen und nicht als Mit-
teilungen, denn das übersieht man leicht oft.

> Hallo :-) Tut mir leid bin leicht unter Stress.. Also
> erstmals vielen Dank für deine Antwort… ich muss die
> Ungleichung für x>0 zeigen und habe die mittlere Gleichung
> umgeformt (binomialkoeff.) und komm trotzdem nicht weiter..
> aber trotzdem vielen Dank

Wenn du die Ungleichung für alle [mm] x\in\IR_{>0} [/mm] und [mm] n\in\IN_0 [/mm] zeigen
sollst, dann benutz den Tipp, den ich dir gegeben habe.

Bernoullische Ungleichung!

      [mm] (1+x)^n\ge(1+nx) [/mm] für alle [mm] x\in\IR_{\ge-1} [/mm] und [mm] n\in\IN_0. [/mm]


Gruß
DieAcht

Bezug
        
Bezug
Verallgemeinerte Bernoulli Ung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Di 11.03.2014
Autor: fred97


> Beweis folgender Ungleichung
>
> Ich habe irgendwie null Ahnung wie ich da ran gehen
> sollte.. Mit Induktion oder mit dem Binomischen Lehrsatz…
>
> Wäre sehr glücklich , wenn ihr mir paar Tipps geben
> könntet..
>  [mm]\summe_{k=0}^{n} ((n*x)/k)^k \le (1+x)^n \le \summe_{k=0}^{n} ((e*n*x)/k)^k[/mm]


Für k=0 sind die Ausdrücke [mm] \br{n*x}{k} [/mm]  und  [mm] \br{e*n*x}{k} [/mm]  sinnlos !

Ist vielleicht das zu zeigen (für x>0):

[mm]\summe_{k=1}^{n} ((n*x)/k)^k \le (1+x)^n \le \summe_{k=1}^{n} ((e*n*x)/k)^k[/mm]  ?

Wenn ja, so ist jedenfalls die rechte Ungleichung falsch !

Wäre  [mm] (1+x)^n \le \summe_{k=1}^{n} ((e*n*x)/k)^k [/mm] für alle x>0 richtig, so auch für x=0 (Stetigkeit !)

Für x=0 hätten wir dann: 1 [mm] \le [/mm] 0.


Also: wie lautet die Aufgabe korrekt ?

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de