www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Vereinfache folgende Terme
Vereinfache folgende Terme < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfache folgende Terme: Vereinfachen
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 01.11.2010
Autor: TeamBob

Aufgabe
Vereinfache folgende Ausdrücke weitestgehend

[mm] \wurzel{3}(2\wurzel{12}-\wurzel{3}+3\wurzel{\bruch{4}{3}}-\wurzel{0,27}) [/mm]


Hallo
Also ich habe mal aus jeder Wurzel eine Potenz gemacht und es so umgeschrieben, aber ich habe weiter keine Idee wie ich da was zusammenfassen darf und kann.

[mm] \wurzel{3}(2\wurzel{12}-\wurzel{3}+3\wurzel{\bruch{4}{3}}-\wurzel{0,27}) [/mm]

[mm] 3^{\bruch{1}{2}}(2*12^{\bruch{1}{2}}-3^{\bruch{1}{2}}+3*({\bruch{4}{3}})^{\bruch{1}{2}}-0,27^{\bruch{1}{2}}) [/mm]

        
Bezug
Vereinfache folgende Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mo 01.11.2010
Autor: Tyskie84

Hallo,

> Vereinfache folgende Ausdrücke weitestgehend
>  
> [mm]\wurzel{3}(2\wurzel{12}-\wurzel{3}+3\wurzel{\bruch{4}{3}}-\wurzel{0,27})[/mm]
>  Hallo
>  Also ich habe mal aus jeder Wurzel eine Potenz gemacht und
> es so umgeschrieben, aber ich habe weiter keine Idee wie
> ich da was zusammenfassen darf und kann.
>  
> [mm]\wurzel{3}(2\wurzel{12}-\wurzel{3}+3\wurzel{\bruch{4}{3}}-\wurzel{0,27})[/mm]
>  

> [mm]3^{\bruch{1}{2}}(2*12^{\bruch{1}{2}}-3^{\bruch{1}{2}}+3*({\bruch{4}{3}})^{\bruch{1}{2}}-0,27^{\bruch{1}{2}})[/mm]
>  

das umzuschreiben bringt hier gar nichts. schreibe lieber um. [mm] \wurzel{12}=\wurzel{3*4}=2\wurzel{3} [/mm]

jetzt den bruch anschauen: [mm] 3\wurzel{\bruch{4}{3}}=\wurzel{\bruch{36}{3}}=.... [/mm] fällt dir was auf?



[hut] Gruß

Bezug
                
Bezug
Vereinfache folgende Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mo 01.11.2010
Autor: TeamBob

Hallo
Also ich glaube ich stehe etwas auf den Schlauch im Moment.
Ich habe mir deinen Hinweis angeschaut, aber so richtig ist der funke noch
nicht übergesprungen. Wäre sowas hier möglich oder ist  das falsch?

[mm] \wurzel{3}(2\wurzel{12}-\wurzel{3}+3\wurzel{\bruch{4}{3}}-\wurzel{0,27}) [/mm]

[mm] \wurzel{3}(\wurzel{48}-\wurzel{3}+\wurzel{12}-\wurzel{0,27}) [/mm]

[mm] \wurzel{3}(\wurzel{48-3+12-0,27}) [/mm]

Bezug
                        
Bezug
Vereinfache folgende Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mo 01.11.2010
Autor: Tyskie84

Hallo,

> Hallo
>  Also ich glaube ich stehe etwas auf den Schlauch im
> Moment.
>  Ich habe mir deinen Hinweis angeschaut, aber so richtig
> ist der funke noch
>  nicht übergesprungen. Wäre sowas hier möglich oder ist  
> das falsch?
>  
> [mm]\wurzel{3}(2\wurzel{12}-\wurzel{3}+3\wurzel{\bruch{4}{3}}-\wurzel{0,27})[/mm]
>  
> [mm]\wurzel{3}(\wurzel{48}-\wurzel{3}+\wurzel{12}-\wurzel{0,27})[/mm]
>
> [mm]\wurzel{3}(\wurzel{48-3+12-0,27})[/mm]  


sorry, aber das ist schrecklich.... [mm] \wurzel{a\pm\\b}\not=\wurzel{a}\pm\wurzel{b} [/mm]

wo genau hast du jetzt meine Hinweise umgesetzt?

[mm] \wurzel{12}=2\wurzel{3} [/mm]

[mm] 3\wurzel{\bruch{4}{3}}=2\wurzel{3} [/mm]

[mm] \wurzel{0,27}=\wurzel{\bruch{27}{100}}=\wurzel{\bruch{9*3}{100}}=\bruch{3*\wurzel{3}}{10} [/mm]

Nun:

[mm] \wurzel{3}\left(2*2\wurzel{3}-\wurzel{3}+2\wurzel{3}-\bruch{3*\wurzel{3}}{10})\right) [/mm]

[mm] \wurzel{3}\left(5\wurzel{3}-\bruch{3*\wurzel{3}}{10})\right) [/mm]

So und nun bleibt es dir überlassen ob du [mm] 5\wurzel{3} [/mm] zu [mm] \bruch{50*\wurzel{3}}{10} [/mm] umschreibst oder direkt die [mm] \wurzel{3} [/mm] ausklammerst. restliche Klammer zusammenfassen und sich über das Ergebnis freuen :-)

[hut] Gruß

Bezug
                                
Bezug
Vereinfache folgende Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Mo 01.11.2010
Autor: TeamBob

Hey....

Also ich habe dann mal von deinen Lösungsweg aus weitergerechnet und hoffe es stimmt.
Bitte um Feedback...
Danke

[mm] \wurzel{3}(\bruch{50*\wurzel{3}}{50}) [/mm]

dann vor der Klammer die Wurzel 3 zum Bruch machen. dann multipliezieren.
Dann bekommt man Wurzel 3 * wurzel 3 = was ja 3 ist und das mal 50.
Dann erhält mal 150 und das dann zum schluss ja durch 50...

Dann sollte zum Schluss 3 rauskommen?
Danke

Bezug
                                        
Bezug
Vereinfache folgende Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mo 01.11.2010
Autor: Tyskie84

Hallo,

> Hey....
>  
> Also ich habe dann mal von deinen Lösungsweg aus
> weitergerechnet und hoffe es stimmt.
>  Bitte um Feedback...
>  Danke
>  
> [mm]\wurzel{3}(\bruch{50*\wurzel{3}}{50})[/mm]
>  

Ich habe mich verschrieben und möchte mich dafür entschuldigen fürs missverständnis. Ich habe es auch schon verändert. In der Klammer kommt [mm] \bruch{47*\wurzel{3}}{10} [/mm] heraus denn [mm] 5\wurzel{3}=\bruch{50*\wurzel{3}}{\red{10}} [/mm]

Nun die [mm] \wurzel{3} [/mm] heraus ziehen und wie du richtig bemerkt hast ergibt [mm] \wurzel{3}*\wurzel{3}=3 [/mm]

Und somit als Endergebnis [mm] \wurzel{\bruch{141}{10}}=14,1 [/mm]


[hut] Gruß

Bezug
                                                
Bezug
Vereinfache folgende Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mo 01.11.2010
Autor: TeamBob

Hallo
Also ich verstehe nicht ganz wieso du im Ergebnis eine Wurzel hast....?

Also es ergibt sich doch denn folgendes:

[mm] \wurzel{3}( \bruch{47\cdot{}\wurzel{3}}{10}) [/mm]

Dann ergibt sich doch das [mm] \wurzel{3 } *\wurzel{3} [/mm] = 3 ist
Und dann 3 * 47 ergibt 141 und das durch 10.
Wie genau kommst du denn auf Wurzel im Ergebnis?

Bezug
                                                        
Bezug
Vereinfache folgende Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mo 01.11.2010
Autor: Tyskie84

Hallo,

> Hallo
>  Also ich verstehe nicht ganz wieso du im Ergebnis eine
> Wurzel hast....?
>  
> Also es ergibt sich doch denn folgendes:
>  
> [mm]\wurzel{3}( \bruch{47\cdot{}\wurzel{3}}{10})[/mm]
>  
> Dann ergibt sich doch das [mm]\wurzel{3 } *\wurzel{3}[/mm] = 3 ist
> Und dann 3 * 47 ergibt 141 und das durch 10.
>  Wie genau kommst du denn auf Wurzel im Ergebnis?


Hast recht. Die Wurzel hat da nix zu suchen. Blödes Copy&Paste ;-). Nur [mm] \bruch{141}{10} [/mm] als Ergebnis.

[hut] Gruß

Bezug
                                                
Bezug
Vereinfache folgende Terme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Mo 01.11.2010
Autor: leduart

Hallo
kleine Korrektur: nicht $ [mm] \wurzel{\bruch{141}{10}}=14,1 [/mm] $
sondern [mm] \bruch{141}{10} [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de