www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Vereinfachen eines Wurzelterms
Vereinfachen eines Wurzelterms < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen eines Wurzelterms: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:50 Sa 29.03.2014
Autor: clft

Aufgabe
Vereinfache:

[mm] \bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})} [/mm]


Hallo,

ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Eine Mathelehrerin an meiner Schule hat folgende Rechnung gemacht:

[mm] \bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})} [/mm]

[mm] =\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}*\bruch{(\wurzel{7}+\wurzel{3})} {(\wurzel{7}+\wurzel{3})} [/mm]

[mm] =\bruch{(7+2*\wurzel{21}+3)*(\wurzel{63}-\wurzel{7})}{7-3} [/mm]

[mm] =\bruch{7*\wurzel{63}-7*\wurzel{7}+2*\wurzel{21*63}-2\wurzel{21*7}+3*\wurzel{63}+3*\wurzel{7}}{4} [/mm]

[mm] =\bruch{10*\wurzel{63}-10*\wurzel{7}+2*\wurzel{21*63}-2*\wurzel{21*7}}{4} [/mm]

[mm] =\bruch{30*\wurzel{7}-10*\wurzel{7}+42*\wurzel{3}-14*\wurzel{3}}{4} [/mm]

[mm] =\bruch{20*\wurzel{7}+28*\wurzel{3}}{4} [/mm]

[mm] =5*\wurzel{7}+7\wurzel{3} [/mm]

Ich verstehe den Rechenweg leider nicht so ganz.

Danke im voraus
clft

        
Bezug
Vereinfachen eines Wurzelterms: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Sa 29.03.2014
Autor: DieAcht

Hallo clft,


> Vereinfache:
>  
> [mm]\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}[/mm]
>  
> Hallo,
>  
> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Eine Mathelehrerin an meiner Schule hat folgende Rechnung
> gemacht:
>  
> [mm]\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}[/mm]
>
> [mm]=\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}*\bruch{(\wurzel{7}+\wurzel{3})} {(\wurzel{7}+\wurzel{3})}[/mm]
>  
> [mm]=\bruch{(7+2*\wurzel{21}+3)*(\wurzel{63}-\wurzel{7})}{7-3}[/mm]
>  
> [mm]=\bruch{7*\wurzel{63}-7*\wurzel{7}+2*\wurzel{21*63}-2\wurzel{21*7}+3*\wurzel{63}+3*\wurzel{7}}{4}[/mm]
>  
> [mm]=\bruch{10*\wurzel{63}-10*\wurzel{7}+2*\wurzel{21*63}-2*\wurzel{21*7}}{4}[/mm]
>  
> [mm]=\bruch{30*\wurzel{7}-10*\wurzel{7}+42*\wurzel{3}-14*\wurzel{3}}{4}[/mm]
>  
> [mm]=\bruch{20*\wurzel{7}+28*\wurzel{3}}{4}[/mm]
>  
> [mm]=5*\wurzel{7}+7\wurzel{3}[/mm]
>  
> Ich verstehe den Rechenweg leider nicht so ganz.

Sag uns doch bitte was du genau nicht verstanden hast. Der
eigentlich Trick hierbei ist die dritte binomische Formel

      [mm] (a+b)(a-b)=a^2-b^2 [/mm] für alle [mm] a,b\in\IR. [/mm]

im Nenner. Am Besten du schreibst nach jedem Gleichheits-
zeichen auf was du nicht verstanden hast.


Gruß
DieAcht

Bezug
        
Bezug
Vereinfachen eines Wurzelterms: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Sa 29.03.2014
Autor: M.Rex

Hallo und [willkommenmr]

> Vereinfache:

>

> [mm]\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}[/mm]

>

> Hallo,

>

> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Eine Mathelehrerin an meiner Schule hat folgende Rechnung
> gemacht:

>

> [mm]\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}[/mm]

Erweitern, so dass im Nenner die 3. bin. Formel auftaucht, denn damit kannst du den Nenner wurzelfrei machen.

>

> [mm]=\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}*\bruch{(\wurzel{7}+\wurzel{3})} {(\wurzel{7}+\wurzel{3})}[/mm]

Ausmultiplizieren, im Nenner die 3. bin. F. nutzen

>

> [mm]=\bruch{(7+2*\wurzel{21}+3)*(\wurzel{63}-\wurzel{7})}{7-3}[/mm]

Nochmal ausmultiplizieren

>

> [mm]=\bruch{7*\wurzel{63}-7*\wurzel{7}+2*\wurzel{21*63}-2\wurzel{21*7}+3*\wurzel{63}+3*\wurzel{7}}{4}[/mm]

Zusammenfassen

>

> [mm]=\bruch{10*\wurzel{63}-10*\wurzel{7}+2*\wurzel{21*63}-2*\wurzel{21*7}}{4}[/mm]

Teilweise radizieren, wenn möglich

>

> [mm]=\bruch{30*\wurzel{7}-10*\wurzel{7}+42*\wurzel{3}-14*\wurzel{3}}{4}[/mm]

Zusammenfassen
>

> [mm]=\bruch{20*\wurzel{7}+28*\wurzel{3}}{4}[/mm]

Kürzen
>

> [mm]=5*\wurzel{7}+7\wurzel{3}[/mm]

>

> Ich verstehe den Rechenweg leider nicht so ganz.

>

> Danke im voraus
> clft

Marius

Bezug
                
Bezug
Vereinfachen eines Wurzelterms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Sa 29.03.2014
Autor: clft

Danke.

Mein Problem ist mittlerweile nur noch folgendes:

Wenn ich:

[mm] (\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})*(\wurzel{7}+\wurzel{3}) [/mm] rechne, kommt bei mir nicht 7-3 raus, sondern etwas anderes...

Mfg
clft

Bezug
                        
Bezug
Vereinfachen eines Wurzelterms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Sa 29.03.2014
Autor: DieAcht


> Danke.
>  
> Mein Problem ist mittlerweile nur noch folgendes:
>  
> Wenn ich:
>  
> [mm](\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})*(\wurzel{7}+\wurzel{3})[/mm]
> rechne, kommt bei mir nicht 7-3 raus, sondern etwas
> anderes...

Dritte binomische Formel:

      [mm] (a+b)(a-b)=a^2-b^2 [/mm] für alle [mm] a,b\in\IR. [/mm]

Setze [mm] a:=\wurzel{7} [/mm] und [mm] b:=\wurzel{3}, [/mm] dann gilt:

      [mm] (a+b)(a-b)=a^2-b^2=(\wurzel{7})^2-(\wurzel{3})^2=7-3=4 [/mm]


DieAcht

Bezug
                                
Bezug
Vereinfachen eines Wurzelterms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Sa 29.03.2014
Autor: clft

Das ist mir schon bewusst, allerdings bleibt ja noch ein [mm] (\wurzel{7}+\wurzel{3}) [/mm] übrig...

Bezug
                                        
Bezug
Vereinfachen eines Wurzelterms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Sa 29.03.2014
Autor: DieAcht

Die Lösung ist falsch. Ich habe am Ende auch was anderes raus.
Das Erweitern am Anfang macht meiner Ansicht nach nicht viel Sinn.

DieAcht

Bezug
        
Bezug
Vereinfachen eines Wurzelterms: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Sa 29.03.2014
Autor: chrisno

Das sieht so aus, als hätte das Ganze mit
$ [mm] \bruch{(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})\cdot{}} [/mm] $
angefangen. Dann wird erweitert und
$ $ [mm] \bruch{(\wurzel{7}+\wurzel{3})\cdot{}(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})\cdot{}(\wurzel{7}+\wurzel{3})} [/mm] $
erhalten. Nun würde ich mal $63 = 3 * 3 * 7$ sehen und damit umformen [mm] $\wurzel{63} [/mm] = 3 * [mm] \wurzel{7}$. [/mm]
Im Nenner die dritte binomische Formel, deshalb wurde ja erweitert
$ [mm] \bruch{(\wurzel{7}+\wurzel{3})\cdot{}(3\wurzel{7}-\wurzel{7})}{7-3} [/mm] $
$= [mm] \bruch{(\wurzel{7}+\wurzel{3})\cdot{}2\wurzel{7}}{4} [/mm] $
[mm] $=\bruch{2*7+2\wurzel{21}}{4}$ [/mm]
[mm] $=\bruch{7+\wurzel{21}}{2}$ [/mm]

> Vereinfache:
>  
> [mm]\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}[/mm]
>  
> Hallo,
>  
> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Eine Mathelehrerin an meiner Schule hat folgende Rechnung
> gemacht:
>  
> [mm]\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}[/mm]
>
> [mm]=\bruch{(\wurzel{7}+\wurzel{3})*(\wurzel{63}-\wurzel{7})}{(\wurzel{7}-\wurzel{3})*(\wurzel{7}+\wurzel{3})}*\bruch{(\wurzel{7}+\wurzel{3})} {(\wurzel{7}+\wurzel{3})}[/mm]
>

ab hier ist es dann falsch, wie Du schon selbst gemerkt hast.

> [mm]=\bruch{(7+2*\wurzel{21}+3)*(\wurzel{63}-\wurzel{7})}{7-3}[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de