www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Vereinfachen mit sin,cos,tan
Vereinfachen mit sin,cos,tan < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen mit sin,cos,tan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 So 11.10.2009
Autor: Sanny

Hallo,

ich habe schon wieder so eine Aufgabe, an der ich verzweifel.

Aufgabenstellung: Vereinfachen Sie.

Lösung: [mm] \bruch{1}{2} [/mm] sin2x


Aufgabe: sin2x - [mm] \bruch{tan x}{1 + tan^{2} x} [/mm]


Ich habe so angefangen:

= sin2x - [mm] \bruch{\bruch{sinx}{cosx}}{\bruch{1}{cos^{2} x}} [/mm]

= sin2x - [mm] \bruch{sinx}{cosx} \bruch{cos^{2} x}{1} [/mm]

= sin2x - [mm] \bruch{sinx cos^{2}x}{cosx} [/mm]

= sin2x - [mm] \bruch{sinx (\bruch{1}{2} (1 + cos2x)}{cosx} [/mm]

bis hierhin glaub ich, bin ich auf dem richtigen Weg...;-)

und so hab ich weiter gemacht:

= [mm] \bruch{sin2xcosx - sinx (\bruch{1}{2} (1 + cos2x)}{cosx} [/mm]

und jetzt weiß ich nicht weiter. Hab auch schon versucht die Klammer aufzulösen, aber dann komm ich auch nicht weiter.... [verwirrt]


        
Bezug
Vereinfachen mit sin,cos,tan: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 So 11.10.2009
Autor: abakus


> Hallo,
>  
> ich habe schon wieder so eine Aufgabe, an der ich
> verzweifel.
>  
> Aufgabenstellung: Vereinfachen Sie.
>  
> Lösung: [mm]\bruch{1}{2}[/mm] sin2x
>  
>
> Aufgabe: sin2x - [mm]\bruch{tan x}{1 + tan^{2} x}[/mm]
>  
>
> Ich habe so angefangen:
>  
> = sin2x - [mm]\bruch{\bruch{sinx}{cosx}}{\bruch{1}{cos^{2} x}}[/mm]
>  
> = sin2x - [mm]\bruch{sinx}{cosx} \bruch{cos^{2} x}{1}[/mm]
>  
> = sin2x - [mm]\bruch{sinx cos^{2}x}{cosx}[/mm]
>  
> = sin2x - [mm]\bruch{sinx (\bruch{1}{2} (1 + cos2x)}{cosx}[/mm]

Autsch! Das nennt man "verschlimmbessern".
Kürze lieber eine Zeile höher cos x.
Für sin(2x) gilt übrigens die Doppelwinkelformel als Spezielfall des MBAdditionstheorems für [mm] sin(\alpha+\alpha) [/mm] .
Gruß Abakus

>  
> bis hierhin glaub ich, bin ich auf dem richtigen Weg...;-)
>  
> und so hab ich weiter gemacht:
>  
> = [mm]\bruch{sin2xcosx - sinx (\bruch{1}{2} (1 + cos2x)}{cosx}[/mm]
>  
> und jetzt weiß ich nicht weiter. Hab auch schon versucht
> die Klammer aufzulösen, aber dann komm ich auch nicht
> weiter.... [verwirrt]
>  


Bezug
                
Bezug
Vereinfachen mit sin,cos,tan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 So 11.10.2009
Autor: Sanny

Hm. Gut. Aber ich kriege immernoch nicht das richtige Ergebnis raus [keineahnung]

ich habe dann nach dem kürzen:

= sin2x - sinx cosx

= 2 sinx cosx - sinx cosx

= sinx cosx

= [mm] \bruch{1}{2} [/mm] (sin (x-x) + sin (x+x))

= [mm] \bruch{1}{2} [/mm] (sin + sin2x)

= [mm] \bruch{1}{2} [/mm] (2 sin2x)

= sin2x                 ODER???  Lösung soll ja [mm] \bruch{1}{2} [/mm] sin2x sein.

Bezug
                        
Bezug
Vereinfachen mit sin,cos,tan: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 So 11.10.2009
Autor: ms2008de

Hallo,
> Hm. Gut. Aber ich kriege immernoch nicht das richtige
> Ergebnis raus [keineahnung]
>  
> ich habe dann nach dem kürzen:
>  
> = sin2x - sinx cosx
>  
> = 2 sinx cosx - sinx cosx
>  
> = sinx cosx
>  
> = [mm]\bruch{1}{2}[/mm] (sin (x-x) + sin (x+x))
>  
> = [mm]\bruch{1}{2}[/mm] (sin + sin2x)
>  

Also wenn bis dahin alles richtig war, ist hier offensichtlich der Fehler: sin(x-x)= sin 0 =0, dann würde auf jeden Fall (,vllt. auch nur durch Zufall,) das richtige Ergebnis rauskommen.

> = [mm]\bruch{1}{2}[/mm] (2 sin2x)
>  
> = sin2x                 ODER???  Lösung soll ja
> [mm]\bruch{1}{2}[/mm] sin2x sein.

Viele Grüße

Bezug
                        
Bezug
Vereinfachen mit sin,cos,tan: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 So 11.10.2009
Autor: abakus


> Hm. Gut. Aber ich kriege immernoch nicht das richtige
> Ergebnis raus [keineahnung]
>  
> ich habe dann nach dem kürzen:
>  
> = sin2x - sinx cosx
>  
> = 2 sinx cosx - sinx cosx
>  
> = sinx cosx

Na, besser geht es doch gar nicht.
Herauskommen soll 0,5*sin(2x) ?
Das wäre also das selbe wie 0,5*(2 [mm] \sin{x} \cos{x}) [/mm] .
Und was hast du gerade eben erhalten?

>  
> = [mm]\bruch{1}{2}[/mm] (sin (x-x) + sin (x+x))
>  
> = [mm]\bruch{1}{2}[/mm] (sin + sin2x)
>  
> = [mm]\bruch{1}{2}[/mm] (2 sin2x)
>  
> = sin2x                 ODER???  Lösung soll ja
> [mm]\bruch{1}{2}[/mm] sin2x sein.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de