www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Vereinfachung von Ausdrücken
Vereinfachung von Ausdrücken < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung von Ausdrücken: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:13 Sa 15.12.2007
Autor: jboss

Aufgabe
Vereinfachen Sie die folgenden Ausdrücke mit $a > 0$ soweit wie möglich:

a) $ [mm] \bruch{a^{(a^{a+1})}}{e^{(e^{a ln a + ln ln a})}} [/mm] - [mm] a^{(a^{a} (a-1))} [/mm] $

b) $ [mm] ln_{a^2}( \wurzel[n]{a^{39n}a^{-n}}(exp(a))^{\bruch{ln a}{a}}a^{-17a}) [/mm] $

Hallo zusammen! :-)
Obige Ausdrücke sind also zu vereinfachen.

Mein Rechenweg zu a) sieht wie folgt aus:
$ [mm] \bruch{a^{(a^{a+1})}}{e^{(e^{a ln a + ln ln a})}} [/mm] - [mm] a^{(a^{a} (a-1))} [/mm] $

$ = [mm] \bruch{a^{(a^{a+1})}}{e^{(e^{a ln a} e^{ln ln a})}} [/mm] - [mm] a^{(a^{a} (a-1))} [/mm] $

$ = [mm] \bruch{a^{(a^{a+1})}}{e^{((a^{a}) ln a)}} [/mm] - [mm] a^{(a^{a} (a-1))} [/mm] $

$ = [mm] \bruch{a^{(a^{a+1})}}{a^{(a^{a})}} [/mm] - [mm] a^{(a^{a+1} - a^a)} [/mm] $

Weiter komme ich nicht. Irgendwie komme ich mit den doppelten Potenzen nicht klar :-( Wäre sehr nett, wenn mir jemand behilflich sein könnte.


Mein Rechenweg zu b) sieht wie folgt aus:

$ [mm] ln_{a^2}( \wurzel[n]{\bruch{(a^{39})^n}{a^{n}}}(e^a)^{\bruch{ln a}{a}}\bruch{1}{a^{17a}}) [/mm] $

$ = [mm] ln_{a^2}( a^{38} ((e^a)^{\bruch{1}{a})^{ln a}} \bruch{1}{a^{17a}}) [/mm] $

$ = [mm] ln_{a^2}( a^{38} e^{ln a} \bruch{1}{a^{17a}}) [/mm] $

$ = [mm] ln_{a^2}( a^{38} [/mm] a [mm] \bruch{1}{a^{17a}}) [/mm] $

$ = [mm] ln_{a^2}( \bruch{a^{39}}{a^{17a}}) [/mm] $

$ = [mm] ln_{a^2}( \bruch{a^{39}}{a^{17a}}) [/mm] $

$ = [mm] ln_{a^2}(a^{39}) [/mm] - [mm] ln_{a^2}({a^{17a}}) [/mm] $

$ = 39 [mm] ln_{a^2}(a) [/mm] - 17a [mm] ln_{a^2}({a}) [/mm] $

Kann ich hier noch weiter vereinfachen oder haben sich vieleicht irgendwo Fehler eingeschlichen? ;-)

Ich bedanke mich schonmal für all eure Antworten.

Gruss jboss


        
Bezug
Vereinfachung von Ausdrücken: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 14:28 Di 18.12.2007
Autor: Roadrunner

Hallo jboss!



> Mein Rechenweg zu b) sieht wie folgt aus:
>  
> [mm]= 39 ln_{a^2}(a) - 17a ln_{a^2}({a})[/mm]

[ok] Ich konnte keinen Fehler entdecken.

Du kannst ja noch umformen zu: $a \ = \ [mm] \wurzel{a^2} [/mm] \ = \ [mm] \left(a^2\right)^{\bruch{1}{2}}$ [/mm] und damit den [mm] $\log_{a^2}$ [/mm] eliminieren.


Gruß vom
Roadrunner


Bezug
                
Bezug
Vereinfachung von Ausdrücken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Di 18.12.2007
Autor: jboss

Vielen Dank Roadrunner!
Die Aufgabaen habe ich zwar schon abgegeben, aber der Hinweis mit der Elimination von [mm] $a^2$ [/mm] in der Basis ist auch so sehr hilfreich :-)

Gruss jboss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de