www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Vereinigungen in Semiringen
Vereinigungen in Semiringen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigungen in Semiringen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:02 Do 20.10.2011
Autor: Teufel

Aufgabe
Zeigen sie: Man kann jede Vereinigung von Mengen aus einem Semiring A als disjunkte Vereinigung von Mengen aus A schreiben.

Hi!

Hier habe ich leider keine Idee.

Nehmen wir der Übersichtlichkeit halber erst mal 2 Mengen X, Y [mm] \in [/mm] A.

Dann will ich $X [mm] \cup [/mm] Y$ ja irgendwie als disjunkte Vereinigung darstellen. Nun habe ich den Standardtrick probiert, also $X [mm] \cup [/mm] Y = X [mm] \cup (Y\backslash [/mm] X)$. Beide Mengen sind nun disjunkt, aber nun muss ich zeigen, dass ich auch [mm] $(Y\backslash [/mm] X)$ irgendwie als Vereinigung disjunkter Mengen darstellen kann. Und hier drehe ich mich dann im Kreis. Ich kann [mm] $(Y\backslash [/mm] X)$ wieder als Vereinigung von Mengen aus A schreiben (Semiringeigenschaft), die erst mal nicht disjunkt sein müssen, also mache ich sie disjunkt, wozu ich dann wieder eine Vereinigung brauche, die ich disjunkt machen muss usw.

Kann mir da jemand bitte helfen?

        
Bezug
Vereinigungen in Semiringen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Do 20.10.2011
Autor: reverend

Hallo Teufel,

nur so eine Idee:

> ...aber nun muss ich zeigen, dass
> ich auch [mm](Y\backslash X)[/mm] irgendwie als Vereinigung
> disjunkter Mengen darstellen kann. Und hier drehe ich mich
> dann im Kreis. Ich kann [mm](Y\backslash X)[/mm] wieder als
> Vereinigung von Mengen aus A schreiben
> (Semiringeigenschaft), die erst mal nicht disjunkt sein
> müssen, also mache ich sie disjunkt, wozu ich dann wieder
> eine Vereinigung brauche, die ich disjunkt machen muss
> usw.

Eben: usw. Am Ende gelangst Du (bei endlichen Mengen) an den Punkt, wo die zu betrachtenden Mengen nur jeweils ein Element beinhalten und keine zwei Mengen gleich sind, mithin alle untereinander disjunkt.
Oder? Das wäre ein Reduktionsbeweis.

Wenn aber auch unendliche Mengen erlaubt sind - und die Aufgabe schließt solche ja nicht aus -, dann bleibt Dir m.E. nur ein Widerspruchsbeweis: Wie muss denn eine Vereinigung von Mengen aussehen, die nicht als Vereinigung disjunkter Mengen dargestellt werden kann? Gibt es ein Element dieser Vereinigung, dass zwingend in zwei oder mehr der Ausgangsmengen enthalten sein muss?

Grüße
reverend


Bezug
                
Bezug
Vereinigungen in Semiringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Do 20.10.2011
Autor: reverend

Hallo nochmal,

ich frage mich gerade, wieso die Behauptung eigentlich nur in Halbringen gelten soll. Stimmt das nicht generell, oder übersehe ich etwas? Ich fürchte, in Maßtheorie habe ich komplett geschlafen.

Grüße
reverend


Bezug
                        
Bezug
Vereinigungen in Semiringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Do 20.10.2011
Autor: Teufel

Hi!

Semiringe stehen ja ganz unten in der Mengensystemhierarchie. Also gilt die Aussage auch für alle "höheren" Gebilde, wie Ringe, Sigmaringe, Algebren und Sigmaalgebren. Bei Dynkin-Systemen müsste das auch gehen.


Bezug
                
Bezug
Vereinigungen in Semiringen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:06 Do 20.10.2011
Autor: Teufel

Hi!

Danke für den Anstoß. Aber irgendwie drehe ich mich auch da im Kreis. Ich nehme also an, dass es ein [mm] $A:=\bigcup_{i=1}^{\infty}A_i$ [/mm] mit [mm] $A_i\in [/mm] S$ (Semiring S) gibt, sodass sich A niemals schrieben lässt als [mm] $\bigcup_{i=1}^{\infty}B_i$ [/mm] mit [mm] $B_i\inS$. [/mm] Dann muss es ein Element [mm] $a\in [/mm] A$ geben, dass in mindestens 2 der [mm] B_i [/mm] vorkommt. Seien das im glücklichsten Fall einfach mal nur [mm] B_1 [/mm] und [mm] B_2. [/mm]

Dann betrachte [mm] $A=B_1 \cup B_2\backslash B_1 \cup \bigcup_{i=3}^{\infty}B_i$. [/mm] a kommt dann entweder nur in [mm] B_1 [/mm] vor (das wäre gut!) oder aber in [mm] $B_2\backslash B_1$. [/mm] Ließe sich [mm] $B_2\backslash B_1$ [/mm] nun auch als disjunkte Vereinigung von Mengen aus S beschreiben, wäre auch alles gut. Nun kann aber wieder der Fall eintreten, dass [mm] $B_2\backslash B_1$ [/mm] genau so eine widerspenstige Menge wie A ist, sich also nicht als disjunkte Vereinigung von mengen aus S darstellen lässt. Im schlimmsten Fall kann das a ja auch wieder in mehreren Mengen liegen, mit denen man [mm] $B_2\backslash B_1$ [/mm] bilden kann...

Bezug
                        
Bezug
Vereinigungen in Semiringen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mo 24.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vereinigungen in Semiringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Do 20.10.2011
Autor: tobit09

Hallo Teufel,

gemäß der Definition von Semiring bei []Wikipedia lässt sich [mm] $Y\setminus [/mm] X$ per Definitionem als Vereinigung paarweise disjunkter Elemente von A schreiben. Hattet ihr eine andere Definition?

Viele Grüße
Tobias

Bezug
                
Bezug
Vereinigungen in Semiringen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Do 20.10.2011
Autor: Teufel

Hi!

Ja, bei uns wurde nur gefordert, dass [mm] $X\backslash [/mm] Y$ als Vereinigung von Mengen aus dem Semiring darstellbar sein soll. Habe auch schon rumgeschaut, ob ich im Internet Ansätze finde, aber überall werden Semiringe wie auf Wikipedia definiert und deshalb findet man nirgendwo einen Beweis dafür.

Aber natürlich rechnet es sich mit disjunkten Mengen besser, daher definieren wohl alle die Semiringe so, und de Aufgabe rechtfertigt das, sofern die Aussage überhaupt stimmt.

Bezug
        
Bezug
Vereinigungen in Semiringen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Mo 24.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de