www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Verhältnisse
Verhältnisse < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhältnisse: Idee
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 07.04.2008
Autor: Inferi

Aufgabe
Ein Viereck mit ABCD teilt der Punkt F die Koordinaten DC genau im Mittelpunkt. Ein Punkt E teilt die Strecke BC im Verhältnis 4:1.

In welchem Verhältnis teilt der Schnittpunkt der Geraden FB und AE  die Strecke AE bzw. BF?

Hallo!

Das einzige was ich hinbekommen habe war eine Zeichnung, aber keine genaue Ideen.

Ich brauche dringend Hilfe und meine einzige Idee ist eventuell Strahlensatz, aber dass klappt nicht so ganz.

Vielen, vielen Dank fürs Helfen

        
Bezug
Verhältnisse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mo 07.04.2008
Autor: Somebody


> Ein Viereck mit ABCD teilt der Punkt F die Koordinaten DC
> genau im Mittelpunkt. Ein Punkt E teilt die Strecke BC im
> Verhältnis 4:1.
>  
> In welchem Verhältnis teilt der Schnittpunkt der Geraden FB
> und AE  die Strecke AE bzw. BF?
>  Hallo!
>  
> Das einzige was ich hinbekommen habe war eine Zeichnung,
> aber keine genaue Ideen.

Dies ist ein typisches Problem für eine (in Prüfungen beliebte) Anwendung der Vektorgeometrie: Seien [mm] $\mu$ [/mm] und [mm] $\nu$ [/mm] Skalare mit der Eigenschaft, dass [mm] $\vec{BS}=\mu\vec{BF}$ [/mm] und [mm] $\vec{AS}=\nu\vec{AE}$ [/mm] gilt.
Dann kannst Du eine Nullsumme wie folgt ansetzen: [mm] $\vec{AB}+\vec{BS}+\vec{SA}=\vec{0}$. [/mm] Drücke nun die Vektoren auf der linken Seite dieser Nullsumme (unter Verwendung von [mm] $\mu$ [/mm] und [mm] $\nu$) [/mm] als eine Linearkombination der Basisvektoren [mm] $\vec{AB}$ [/mm] und [mm] $\vec{AD}$ [/mm] aus.
Da diese Basisvektoren linear-unabhängig sind, müssen die resultierenden skalaren Koeffizienten der Basisvektoren [mm] $\vec{AB}$ [/mm] und [mm] $\vec{AD}$ [/mm] (in denen [mm] $\mu$ [/mm] und [mm] $\nu$ [/mm] auftreten werden), beide gleich $0$ sein. Dies ergibt zwei lineare Gleichungen für [mm] $\mu$ [/mm] und [mm] $\nu$. [/mm] Sobald Du [mm] $\mu$ [/mm] und [mm] $\nu$ [/mm] bestimmt hast, kannst Du die Fragestellung beantworten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de