www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Verkehrsdichte
Verkehrsdichte < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkehrsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mi 13.09.2006
Autor: wuschel

Aufgabe
`Zwei mit der Geschwindigkeit v (km/h) fahrende Autos sollten den Sicherheitsabstand : s=v²/100 + v/3,6 + 6 (in m) einhalten. Dabei ist v²/100 der Bremsweg, v/3,6 der sogenannte Reaktionsweg un 6m der Platzbedarf eines stehenden Autos.
Da ein Auto in 1 Stunde die Strecke von 1000*v m zurücklegt, passieren stündlich 1000*v/s Autos eine Meßstelle. Dieser Quotient heißt Verkehrsdichte.
Bei welcher Geschwindigkeit v ist die Verkehrsdichte am größten? Wie viele Autos passieren dann stündlich die Meßstelle?

Hi ihr!

Ich habe jetzt ein Problem. Ich weiß, dass man hier normalerweise nichts reinsetzten darf, wenn man keine eigenen Lösungsansätze hat. Ich habe aber leider keine Ahnung wie ich die Aufgabe lösen soll. Nicht einmal einen Ansatz bekomme ich zustande. Es wäre supernett wenn mir trotzdem jemand helfen könnte.

Liebe Grüße
Lisa

        
Bezug
Verkehrsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Mi 13.09.2006
Autor: M.Rex


> 'Zwei mit der Geschwindigkeit v (km/h) fahrende Autos
> sollten den Sicherheitsabstand : s=v²/100 + v/3,6 + 6 (in
> m) einhalten. Dabei ist v²/100 der Bremsweg, v/3,6 der
> sogenannte Reaktionsweg un 6m der Platzbedarf eines
> stehenden Autos.
>  Da ein Auto in 1 Stunde die Strecke von 1000*v m
> zurücklegt, passieren stündlich 1000*v/s Autos eine
> Meßstelle. Dieser Quotient heißt Verkehrsdichte.
>  Bei welcher Geschwindigkeit v ist die Verkehrsdichte am
> größten? Wie viele Autos passieren dann stündlich die
> Meßstelle?


Hallo Lisa:

Die Verkehrsdichte, ich nenne sie mal [mm] \rho, [/mm] berehcnet sich ja wie folgt:

Verkehrsdichte = [mm] \bruch{Geschwindigkeit [v] * 1000}{Sicherheitsabstand [s]} [/mm]

Also gilt: [mm] \rho(v;s) [/mm] = [mm] \bruch{1000v}{s}. [/mm]

Jetzt hast du oben in der Aufgabenstellung ja die Formel für den Sicherheitsabstand gegeben, nämlich s(v) = [mm] \bruch{v²}{100} [/mm] + [mm] \bruch{v}{3,6} [/mm] + 6.

Also gilt:

[mm] \rho(v) [/mm] = [mm] \bruch{1000v}{\bruch{v²}{100} + \bruch{v}{3,6} + 6} [/mm]

Von dieser Funktion sollst du jetzt das Maximum bestimmen.

Also Ableiten usw....

Hilft das weiter?

Marius

Bezug
                
Bezug
Verkehrsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Mi 13.09.2006
Autor: wuschel

Hi, Marius!

Vielen Dank für deinen Ansatz, nur habe ich jetzt ein Problem mit der Ableitung.
Um das Maximum zu bestimmen muss man ja die erste Ableitung gleich Null setzten. Aber ich habe ein Problem bei der Ableitung. Wir haben das noch nicht gemacht bei einem solchen großen Bruch.

p(v) = $ [mm] \bruch{1000v}{\bruch{v²}{100} + \bruch{v}{3,6} + 6} [/mm] $

Dann ist ja u= 1000v und u'=1000
v(x) [mm] =\bruch{v²}{100} [/mm] + [mm] \bruch{v}{3,6} [/mm] + 6
v' (x) = wie mach ich denn da die ableitung?
dann müsste man das doch nach der quotientenregel zusammensetzen oder?

Liebe Grüße
Lisa

Bezug
                        
Bezug
Verkehrsdichte: nur Potenzregel
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 13.09.2006
Autor: Loddar

Hallo Lisa!


Die Ableitung für den Nenner - also $v'_$ - ist viel einfacher.

[mm] $g(v)=\bruch{1}{100}*v^2 +\bruch{1}{3.6}*v [/mm] + 6$


Kannst Du nun $g'(v)_$ bestimmen durch einfache Anwendung von der MBPotenzregel?


Gruß
Loddar


Bezug
                                
Bezug
Verkehrsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 13.09.2006
Autor: wuschel

Ich habe jetzt die v'(x) gebildet das ist dann ja

v'(x) = [mm] \bruch{2}{100} [/mm] v + [mm] \bruch{1}{3,6} [/mm]


Dann wendet man doch die Quotientenregel an:
u=1000v u'=1000
v= [mm] \bruch{1}{100} v^2 [/mm] + [mm] \bruch{1}{3,6}v [/mm] + 6
v'(x) = [mm] \bruch{2}{100} [/mm] v + [mm] \bruch{1}{3,6} [/mm]

dann hat man
f'(x) = [mm] \bruch{1000v * [ bruch{1}{100} v^2 + \bruch{1}{3,6}v + 6] - 1000*[v'(x) = \bruch{2}{100} v + \bruch{1}{3,6}]} [/mm] {(1/100 v² +1/36 v +6)² }

Stimmt das?

Liebe Grüße
Lisa







Bezug
                                        
Bezug
Verkehrsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mi 13.09.2006
Autor: M.Rex

Hallo

Yep, wenn du damit meinst.

[mm] \bruch{1000v \cdot{} [\bruch{1}{100} v^2 + \bruch{1}{3,6}v + 6] - 1000\cdot{}[\bruch{1}{50} v + \bruch{1}{3,6}]}{(1/100 v² +1/36 v +6)²} [/mm]


Für die Betrachtung der Nullstellen genügt es, die Nullstellen dez Zählers zu betrachten.

Also 1000v [mm] \cdot{} [\bruch{1}{100} v^2 [/mm] + [mm] \bruch{1}{3,6}v [/mm] + 6] = 0

Und ein Produkt ist genau dann = 0, wenn ein Faktor = 0 ist.

Also 1000v = 0 oder [mm] \bruch{1}{100} v^2 [/mm] + [mm] \bruch{1}{3,6}v [/mm] + 6 = 0, was ja mit der p-q-Formel kein Problem darstellen sollte.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de