www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Verkettung, injektiv/surjektiv
Verkettung, injektiv/surjektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung, injektiv/surjektiv: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 21:51 Sa 11.01.2014
Autor: Cccya

Aufgabe
Es seien U,V und W reelle Vektorräume und f: U--> V g: V-->W lineare Abbildungen.
a) Beweisen Sie dass die Hintereinanderausführung g o f: U-->W
gegeben durch u-->g(f(u)) mit u [mm] \in [/mm] U ebenfalls eine lineare Abbildung ist.

b)Zeigen Sie, dass g o f genau dann injektiv ist, wenn sowohl f als auch g injektiv sind.
Gilt die gleiche Äquivalenz für die Surjektivität? Formulieren Sie eine entsprechende
Behauptung und beweisen Sie diese.

Meine Lösung:
a) (g o f) (au+bv) mit v [mm] \in [/mm] V und a.b [mm] \in [/mm] R

= g(f(au+bv)) = g(af(u)+bf(v)) = ag(f(u)) + bg(f(v))
= a(g o f)(u)+b(g o f)(v)

b) Es seien f,g injektiv sowie [mm] u_{1}, u_{2} \in [/mm] U mit (g o [mm] f)(u_{1})=(g [/mm] o [mm] f)(u_{2}). [/mm] Nach Def. gilt dann [mm] g(f(u_{1}))=g(f(u_{2})). [/mm] Da g injektiv ist folgt:
[mm] f(u_{1})= f(u_{2}). [/mm] Da f injektiv ist folgt [mm] u_{1}=u_{2} [/mm] und g o f ist injektiv.

Andere Richtung: Wenn g o f injektiv, ist auch f injektiv denn wäre f nicht injektiv dann gäbe es [mm] u_{1}, u_{2} \in [/mm] U mit [mm] u_{1} \not= u_{2} [/mm] und [mm] f(u_{1})=f(u_{2}) [/mm] Folglich: (g o f) [mm] (u_{1})= g(f(u_{1})) [/mm] = [mm] g(f(u_{2}))= [/mm]
(g o [mm] f)(u_{2}) [/mm] => g o f ist nicht injektiv , Widerspruch zur Vorraussetzung.

Mein Problem: Wie zeige ich jetzt dass für lineare Abbildungen auch g injektiv sein muss, wenn g o f und f injektiv sind, für Abbildungen im Allgemeinen gilt das ja nicht? Bis zu diesem Schritt gilt die Aussage auch für Surjektivität, g ist wiederum im Allgemeinen nicht notwendigerweise surjektiv, aber bei linearen Abbildungen schon?

Vielen Dank!

        
Bezug
Verkettung, injektiv/surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Sa 11.01.2014
Autor: Sax

Hi,

> Es seien U,V und W reelle Vektorräume und f: U--> V g:
> V-->W lineare Abbildungen.
>  a) Beweisen Sie dass die Hintereinanderausführung g o f:
> U-->W
>  gegeben durch u-->g(f(u)) mit u [mm]\in[/mm] U ebenfalls eine
> lineare Abbildung ist.
>  
> b)Zeigen Sie, dass g o f genau dann injektiv ist, wenn
> sowohl f als auch g injektiv sind.
>  Gilt die gleiche Äquivalenz für die Surjektivität?
> Formulieren Sie eine entsprechende
>  Behauptung und beweisen Sie diese.
>  Meine Lösung:
>  a) (g o f) (au+bv) mit v [mm]\in[/mm] V und a.b [mm]\in[/mm] R

Du meinst :  u,v [mm] \in [/mm] U

>  
> = g(f(au+bv)) = g(af(u)+bf(v)) = ag(f(u)) + bg(f(v))
>  = a(g o f)(u)+b(g o f)(v)

perfekt.

>  
> b) Es seien f,g injektiv sowie [mm]u_{1}, u_{2} \in[/mm] U mit (g o
> [mm]f)(u_{1})=(g[/mm] o [mm]f)(u_{2}).[/mm] Nach Def. gilt dann
> [mm]g(f(u_{1}))=g(f(u_{2})).[/mm] Da g injektiv ist folgt:
>  [mm]f(u_{1})= f(u_{2}).[/mm] Da f injektiv ist folgt [mm]u_{1}=u_{2}[/mm]
> und g o f ist injektiv.
>  

einwandfrei.


> Andere Richtung: Wenn g o f injektiv, ist auch f injektiv
> denn wäre f nicht injektiv dann gäbe es [mm]u_{1}, u_{2} \in[/mm]
> U mit [mm]u_{1} \not= u_{2}[/mm] und [mm]f(u_{1})=f(u_{2})[/mm] Folglich: (g
> o f) [mm](u_{1})= g(f(u_{1}))[/mm] = [mm]g(f(u_{2}))=[/mm]
>  (g o [mm]f)(u_{2})[/mm] => g o f ist nicht injektiv , Widerspruch

> zur Vorraussetzung.

so ist es.


>  
> Mein Problem: Wie zeige ich jetzt dass für lineare
> Abbildungen auch g injektiv sein muss, wenn g o f und f
> injektiv sind, für Abbildungen im Allgemeinen gilt das ja
> nicht? Bis zu diesem Schritt gilt die Aussage auch für
> Surjektivität, g ist wiederum im Allgemeinen nicht
> notwendigerweise surjektiv, aber bei linearen Abbildungen
> schon?
>  

Dass du keinen Beweis findest, liegt daran, dass es keinen gibt.
Für U = [mm] \IR, [/mm] V = [mm] \IR^2, [/mm] W = [mm] \IR [/mm]  und  f : x [mm] \mapsto [/mm] (x,0) ,  g : (x,y) [mm] \mapsto [/mm] x  wird   $ [mm] g\circ [/mm] f $ : x [mm] \mapsto [/mm] x  sicher injektiv, ohne dass dies für g zuträfe.

Gruß Sax.


Bezug
                
Bezug
Verkettung, injektiv/surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Sa 11.01.2014
Autor: Cccya

Also ist die Aufgabe falsch gestellt? Weil "genau dann" bedeutet doch eigentlich dass auch g immer injektiv sein muss wenn g o f injektiv ist?

Bezug
                        
Bezug
Verkettung, injektiv/surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 06:08 So 12.01.2014
Autor: angela.h.b.


> Also ist die Aufgabe falsch gestellt?

Hallo,

ja. Das, was Du zeigen sollst, kann man nicht zeigen, weil es nicht stimmt.


> Weil "genau dann"
> bedeutet doch eigentlich dass auch g immer injektiv sein
> muss wenn g o f injektiv ist?  

Ja, Du sollst lt. Aufgabenstellung zeigen, daß aus [mm] g\circ [/mm] f injektiv folgt, daß g und f beide injektiv sind.
Daß dies nicht funktioniert, zeigt das Gegeneispiel.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de