www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Verschieben, strecken,...
Verschieben, strecken,... < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verschieben, strecken,...: Kontrolle
Status: (Frage) beantwortet Status 
Datum: 18:42 Sa 21.06.2014
Autor: Matheverlierer

Aufgabe
geg.: [mm] f(x)=2+2cos(\pi x+\bruch{\pi}{6}) [/mm]
Wie entsteht das zugehörige Schaubild aus der cosinus-Kurve?

Hallo...
[mm] f(x)=2+2cos(\pi \cdot(x+\bruch{1}{6})) [/mm]
1. Streckung in y-Richtung um Faktor 2, Amplitude a=2
2. Verschiebung in y-Richtung um 2 Einheiten nach oben
3. Streckung in y-Richtung um Faktor [mm] \bruch{1}{\pi}, [/mm] Periode p=2
4. Verschiebung in x-Richtung um [mm] \bruch{1}{6} [/mm] nach links.

__________________________________________
Im Lösungsbuch steht:
Streckung in y-Richtung mit Faktor 2
Verschiebung in x-Richtung um [mm] \bruch{\pi}{6} [/mm] nach links;
Streckung in x-Richtung mit Faktor [mm] \bruch{1}{\pi} [/mm]
Verschiebung in y-Richtung um 2 nach oben
oder: Streckung in x-Richtung mit Faktor [mm] \bruch{1}{\pi} [/mm]
; Verschiebung in x-Richtung um [mm] \bruch{1}{6} [/mm]
nach links; Beachten Sie die Reihenfolge!!

Ich mach die erste Variante mal (die 2. Variante war meine eigene Möglicheit): Stimmt mein Vorgehen hier (insbesondere 3.?)
f(x)=cos(x)
1.Streckung in y-Richtung mit Faktor 2: [mm] f_1(x)=2f(x)=2cos(x) [/mm]
2.Verschiebung in x-Richtung um [mm] \bruch{\pi}{6} [/mm] nach links:
[mm] f_2(x)=f_1(x+\bruch{\pi}{6})=2cos(x+\bruch{\pi}{6}) [/mm]
3.Streckung in x-Richtung mit Faktor [mm] \bruch{1}{\pi} [/mm]
[mm] f_3(x)=f_2(\pi x)=2cos(\pi x+\bruch{\pi}{6}) [/mm]
4. Verschiebung in y-Richtung um 2 nach oben
[mm] f_4(x)=f_3(x)+2=2cos(\pi x+\bruch{\pi}{6})+2 [/mm]
_________________________________
Möglich wäre auch noch:
1. Verschiebung in y-Richtung um 1Einheit nach oben
2. strecken in y-Richtung um Faktor 2
3. Verschiebung in x-Richtung um [mm] \bruch{\pi}{6} [/mm] nach links
4.Streckung in x-Richtung mit Faktor [mm] \bruch{1}{\pi} [/mm]

Stimmt das jetzt alles (HOFFENTLICH!!)?


        
Bezug
Verschieben, strecken,...: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Sa 21.06.2014
Autor: Al-Chwarizmi


> geg.: [mm]f(x)=2+2cos(\pi x+\bruch{\pi}{6})[/mm]
>  Wie entsteht das
> zugehörige Schaubild aus der cosinus-Kurve?
>  Hallo...
>  [mm]f(x)=2+2cos(\pi \cdot(x+\bruch{1}{6}))[/mm]
>  1. Streckung in
> y-Richtung um Faktor 2, Amplitude a=2
>  2. Verschiebung in y-Richtung um 2 Einheiten nach oben
>  3. Streckung in y-Richtung um Faktor [mm]\bruch{1}{\pi},[/mm]
> Periode p=2
>  4. Verschiebung in x-Richtung um [mm]\bruch{1}{6}[/mm] nach links.
>  
> __________________________________________
>  Im Lösungsbuch steht:
>  Streckung in y-Richtung mit Faktor 2
>  Verschiebung in x-Richtung um [mm]\bruch{\pi}{6}[/mm] nach links;
> Streckung in x-Richtung mit Faktor [mm]\bruch{1}{\pi}[/mm]
>  Verschiebung in y-Richtung um 2 nach oben
>  oder: Streckung in x-Richtung mit Faktor [mm]\bruch{1}{\pi}[/mm]
>  ; Verschiebung in x-Richtung um [mm]\bruch{1}{6}[/mm]
>  nach links; Beachten Sie die Reihenfolge!!
>  
> Ich mach die erste Variante mal (die 2. Variante war meine
> eigene Möglicheit): Stimmt mein Vorgehen hier
> (insbesondere 3.?)
>   f(x)=cos(x)
>  1.Streckung in y-Richtung mit Faktor 2:
> [mm]f_1(x)=2f(x)=2cos(x)[/mm]
>  2.Verschiebung in x-Richtung um [mm]\bruch{\pi}{6}[/mm] nach
> links:
>  [mm]f_2(x)=f_1(x+\bruch{\pi}{6})=2cos(x+\bruch{\pi}{6})[/mm]
>  3.Streckung in x-Richtung mit Faktor [mm]\bruch{1}{\pi}[/mm]
>  [mm]f_3(x)=f_2(\pi x)=2cos(\pi x+\bruch{\pi}{6})[/mm]
>  4.
> Verschiebung in y-Richtung um 2 nach oben
>  [mm]f_4(x)=f_3(x)+2=2cos(\pi x+\bruch{\pi}{6})+2[/mm]
>  
> _________________________________
>  Möglich wäre auch noch:
>  1. Verschiebung in y-Richtung um 1Einheit nach oben
>  2. strecken in y-Richtung um Faktor 2
>  3. Verschiebung in x-Richtung um [mm]\bruch{\pi}{6}[/mm] nach
> links
>  4.Streckung in x-Richtung mit Faktor [mm]\bruch{1}{\pi}[/mm]
>  
> Stimmt das jetzt alles (HOFFENTLICH!!)?


Hallo,

ich verstehe nicht recht, weshalb du diese Funktion nicht
zuerst einmal auf ganz natürliche Weise "von innen nach
außen" analysierst.

Folgender Weg schiene mir für den vorgegebenen Funktions-
term "natürlich" :

$\ [mm] y_0(x)\ [/mm] =\ cos(x)$      ( Ausgangsfunktion ! )

$\ [mm] y_1(x)\ [/mm] =\ [mm] cos(\red{\pi*}x)$ [/mm]

$\ [mm] y_2(x)\ [/mm] =\ [mm] cos(\pi*x\red{\ +\ \bruch{\pi}{6}})$ [/mm]

$\ [mm] y_3(x)\ [/mm] =\ [mm] \red{2\ *}\ cos(\pi*x+\bruch{\pi}{6})$ [/mm]

$\ [mm] y_4(x)\ [/mm] =\ 2\ *\ [mm] cos(\pi*x+\bruch{\pi}{6})\ \red{+\ 2}$ [/mm]     ( Schlussfunktion  f(x) )

Die dabei zu tätigenden Transformationen sind der Reihe
nach:

[mm] \bullet [/mm]     axiale Streckung in x-Richtung

[mm] \bullet [/mm]     Verschiebung in x-Richtung

[mm] \bullet [/mm]     axiale Streckung in y-Richtung

[mm] \bullet [/mm]     Verschiebung in y-Richtung

Natürlich kann man den Funktionsterm auch umformen, z.B. zu:

     $\ f(x)\ =\ [mm] (cos((x+\frac{1}{6})*\pi)+1)*2$ [/mm]

und dann die dazu passende Reihe von Transformationen
ermitteln, indem man den Term wieder "von innen nach
außen"  analysiert.

Entsprechend den unterschiedlichen (aber äquivalenten)
algebraischen Formen des Funktionsterms kommt man so zu
unterschiedlichen Folgen von geometrischen Transformationen,
die aber jeweils zum selben Ziel führen.

Ich kann dir nur raten, die einzelnen Stadien der schrittweisen
Transformationen mittels Skizzen (oder leichter mittels eines
GTR) grafisch darzustellen und dich von der Äquivalenz der
verschiedenen Transformationen zu überzeugen.

LG ,    Al-Chwarizmi

  



  
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de