www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Verständisproblem-schreibweise
Verständisproblem-schreibweise < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständisproblem-schreibweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Mi 01.08.2007
Autor: NadineSunshine

Aufgabe
y * ((d²y)/(dx²)) + sin²*x = 0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich verstehe diese Aufgabe überhaupt nicht.

Ich habe versucht die Aufgabe umzuformen: in y * ((d²y)/(dx²))  = - sin²*x und dann in y * d²y =  - sin²*x dx².

Der Ausdruck y * d²y bedeuted doch y zweimal abgeleitet nach y, also y" , oder???

Aber was ist mit  - sin²*x dx²? Warum x²???

Kann mir das irgendwer erklären???

Nadine

        
Bezug
Verständisproblem-schreibweise: Übersetzung.
Status: (Antwort) fertig Status 
Datum: 15:19 Mi 01.08.2007
Autor: kochmn

Hallo Nadine,

was Du hier hast ist eine Differenzialgleichung. Ich würde sie
wie folgt notieren:

[mm] y\cdot y'' = -\sin^2(x) [/mm]

Gesucht sind also diejenigen Funktionen y(x), die mit ihrer
2.Ableitung multipliziert [mm]-\sin^2(x)[/mm] ergeben.

Eine mögliche Lösung wäre die Funktion

[mm] y(x)=\sin(x). [/mm]

mit [mm]y''(x)=-\sin(x)[/mm] erhältst Du damit

[mm] y\cdot y'' = \sin(x)\cdot(-\sin(x)) = -\sin^2(x) [/mm]

Viele Grüße
  Markus-Hermann.


Bezug
                
Bezug
Verständisproblem-schreibweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:46 Do 02.08.2007
Autor: NadineSunshine

Vielen Dank für die superschnelle Antwort.

Aber was ist mit dx²? Einfach weglassen? Wie das?

Gruß Nadine

Bezug
                        
Bezug
Verständisproblem-schreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Do 02.08.2007
Autor: angela.h.b.


> Vielen Dank für die superschnelle Antwort.
>  
> Aber was ist mit dx²? Einfach weglassen? Wie das?

Hallo,

[mm] \bruch{dy}{dx} [/mm] bedeutet. daß y einmal nach x abgeleitet wird. Also die erste Ableitung y'.
[mm] \bruch{d^2y}{dx^2} [/mm] bedeutet. daß y zweimal nach x abgeleitet wird. Also die zweite Ableitung y''.

Gruß v. Angela

Bezug
                                
Bezug
Verständisproblem-schreibweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Do 02.08.2007
Autor: NadineSunshine

Vielen Dank!

Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de