www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Verständnisfrage:sin/cos allg.
Verständnisfrage:sin/cos allg. < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfrage:sin/cos allg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Do 08.03.2007
Autor: kati93

Ich hab mal kurz ne Verständnisfrage.

Wenn ich nur einen Wert für [mm] sin(\alpha) [/mm] hab, wie komm ich denn dann auf den Wert von [mm] cos(\alpha) [/mm] OHNE den Winkel zu berechnen?

Liebe Grüße,
Kati

        
Bezug
Verständnisfrage:sin/cos allg.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Do 08.03.2007
Autor: Bastiane

Hallo kati93!

> Wenn ich nur einen Wert für [mm]sin(\alpha)[/mm] hab, wie komm ich
> denn dann auf den Wert von [mm]cos(\alpha)[/mm] OHNE den Winkel zu
> berechnen?

Es gilt: [mm] \sin^2+\cos^2=1, [/mm] demnach also [mm] \cos=\wurzel{1-\sin^2}. [/mm] :-)

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Verständnisfrage:sin/cos allg.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Do 08.03.2007
Autor: kati93

Natürlich!!!!!  Wie blöd!! Manchmal sieht man den Wald vor lauter Bäumen nicht.... :-)

Danke dir

Bezug
                
Bezug
Verständnisfrage:sin/cos allg.: Cos
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Fr 09.03.2007
Autor: heyks


> Hallo kati93!
>  
> > Wenn ich nur einen Wert für [mm]sin(\alpha)[/mm] hab, wie komm ich
> > denn dann auf den Wert von [mm]cos(\alpha)[/mm] OHNE den Winkel zu
> > berechnen?
>  
> Es gilt: [mm]\sin^2+\cos^2=1,[/mm] demnach also
> [mm]\cos=\wurzel{1-\sin^2}.[/mm] :-)

Was ist wenn z.B. [mm] \alpha= [/mm] 180°, dann [mm] -1=cos(180)=\wurzel{1-\sin(180)^2} \not=-1 [/mm]

Es gilt [mm]\left|\cos(\alpha) \right|=\wurzel{1-\sin(\alpha)^2}.[/mm] für alle [mm] \alpha \in \IR [/mm]

LG

Heiko

Bezug
        
Bezug
Verständnisfrage:sin/cos allg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Fr 09.03.2007
Autor: kati93

Wie bestimmt ich den  [mm] cos(\bruch{3}{4}\pi) [/mm] und ähnliches OHNE Taschenrechner????

Und umgekehrt:

Wie bestimme ich [mm] cos(x)=0,5*\wurzel{3} [/mm]  OHNE Taschenrechner??

Danke

Bezug
                
Bezug
Verständnisfrage:sin/cos allg.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Fr 09.03.2007
Autor: Ankh

Die ([]Grundwerte) kann man auswendig lernen bzw. sich herleiten, wenn man weiß, wann der (Co-)Sinus 1 bzw. -1 wird und dass dazwischen jeweils Monotonie gilt.

Bezug
                        
Bezug
Verständnisfrage:sin/cos allg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Fr 09.03.2007
Autor: kati93

okay, danke!
Aber wie leit ich mir denn zB ne krumme zahl wie 70,8° oder sowas her??

Bezug
                                
Bezug
Verständnisfrage:sin/cos allg.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Fr 09.03.2007
Autor: angela.h.b.


> okay, danke!
>  Aber wie leit ich mir denn zB ne krumme zahl wie 70,8°
> oder sowas her??

Hallo,

Menschen, die so modern sind wie Du und ich nehmen den Taschenrechner, und wenn der defekt ist, findet sich vielleicht noch Omas Tafelwerk im Haushalt.

Wenn Du sin70,8°  partout selbst herausfinden möchtest, könntest Du ein Dreieck mit dem entsprechenden Winkel zeichen, Gegenkathete und Hypothenuse ausmessen und dividieren. Alles liefert Dir Näherungswerte.

Du kannst es natürlich auch aus dem Funktionsgraphen ablesen.

Wichtig ist, daß Du die Werte für 30°, 45°, 60° und 90° weißt (oder mit nur kurzem Nachdenken herausfindest) und Dich mit den Symmetrien von sin und cos auskennst.

Gruß v. Angela


Bezug
                                        
Bezug
Verständnisfrage:sin/cos allg.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Fr 09.03.2007
Autor: kati93

okay, danke schön :-)

Bezug
                                
Bezug
Verständnisfrage:sin/cos allg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Fr 09.03.2007
Autor: kati93

Also, ich hab jetzt mal ein paar Aufgaben zur Übung zu diesem Thema gemacht und bei den meisten hats auch ganz gut geklappt.
Allerdings hab ich zwei stück, wo ich mir die Lösung ohne Taschenrechner nicht herleiten kann.

1) [mm] tan(\bruch{3}{4}\pi) [/mm]

das entspricht ja tan(135°) , aber anhand von der Tabelle zu den besonderen Funktionswerten kann ich mir nicht herleiten wie der tangens zu dem Winkel ist...

2)cos(x)= - [mm] \bruch{1}{2} [/mm]

da hab ich glaub ich total verquer gedacht und anscheinend kann man das nicht so machen wie ich das eben vorhatte.
Meine verworrenen Gedankengänge:

cos(x)= - [mm] \bruch{1}{2} \hat= [/mm] cos(120°) [mm] \hat= [/mm] sin(-30°) [mm] \hat= sin(\bruch{1}{6}\pi) [/mm]
und somit: [mm] x_1= \bruch{1}{6}\pi [/mm] und [mm] x_2=\bruch{5}{6}\pi [/mm]
Aber das stimmt ja so nicht....

Hilfe!!

Bezug
                                        
Bezug
Verständnisfrage:sin/cos allg.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Fr 09.03.2007
Autor: Walde

hi kati,


> Also, ich hab jetzt mal ein paar Aufgaben zur Übung zu
> diesem Thema gemacht und bei den meisten hats auch ganz gut
> geklappt.
>  Allerdings hab ich zwei stück, wo ich mir die Lösung ohne
> Taschenrechner nicht herleiten kann.
>
> 1) [mm]tan(\bruch{3}{4}\pi)[/mm]
>  
> das entspricht ja tan(135°) , aber anhand von der Tabelle
> zu den besonderen Funktionswerten kann ich mir nicht
> herleiten wie der tangens zu dem Winkel ist...

Hast du es mit [mm] \tan(x)=\bruch{\sin(x)}{\cos(x)} [/mm] versucht?

>  
> 2)cos(x)= - [mm]\bruch{1}{2}[/mm]
>  
> da hab ich glaub ich total verquer gedacht und anscheinend
> kann man das nicht so machen wie ich das eben vorhatte.
>  Meine verworrenen Gedankengänge:
>  
> cos(x)= - [mm]\bruch{1}{2} \hat=[/mm] cos(120°) [mm]\hat=[/mm] sin(-30°)
> [mm]\hat= sin(\bruch{1}{6}\pi)[/mm]
>  und somit: [mm]x_1= \bruch{1}{6}\pi[/mm]
> und [mm]x_2=\bruch{5}{6}\pi[/mm]
>  Aber das stimmt ja so nicht....
>  
> Hilfe!!

Wenn du -0,5=cos(120°) hast, bist du doch schon fertig, oder nicht? Falls es um die Umrechnung ins Bogenmass geht:

360° entsprechen [mm] 2\pi [/mm] im Einheitskreis und weil

[mm] 120°=\bruch{1}{3}*360° [/mm]

gilt [mm] x=\bruch{1}{3}*2\pi [/mm]

Falls das zu verwirrend war,man kann auch sagen (so ist es auch eigentlich üblich:)

[mm] \bruch{x}{120°}=\bruch{2\pi}{360°} [/mm] gelesen:" x verhält sich zu 120°, wie [mm] 2\pi [/mm] zu 360°."

Ok?

LG walde

Bezug
                                                
Bezug
Verständnisfrage:sin/cos allg.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:29 Fr 09.03.2007
Autor: kati93

sehr okay!! :-)
Danke, hast mir wirklich sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de