www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Verständnisproblem
Verständnisproblem < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Sa 26.07.2008
Autor: Surfer

Hallo, habe mal ne Frage wenn ich ein Integral habe der Form:

[mm] \integral_{}^{}{sinh(x)sinh(x) dx} [/mm] komme ich ja im weiteren auf
= cosh(x)*sinh(x) - [mm] \integral_{}^{}{cosh(x)cosh(x) dx} [/mm]

jetzt weiss ich ja [mm] (cosh(x))^{2} [/mm] lässt sich auch schreiben als 1 - [mm] (sinh(x))^{2} [/mm] . Jetzt wollte ich es vorher einmal probieren ohne diese "Vereinfachung" zu integrieren, aber dann zieht sich der ganze Ausdruck immer ab irgendwie!

Wie würde es denn witergehen, wenn ich [mm] (cosh(x))^{2} [/mm] nicht durch 1 - [mm] (sinh(x))^{2} [/mm] ersetzen würde? also wie gesagt, bei mir zieht fällt dann alles wieder raus!

lg Surfer

        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Sa 26.07.2008
Autor: angela.h.b.


> Hallo, habe mal ne Frage wenn ich ein Integral habe der
> Form:
>  
> [mm]\integral_{}^{}{sinh(x)sinh(x) dx}[/mm] komme ich ja im weiteren
> auf
> = cosh(x)*sinh(x) - [mm]\integral_{}^{}{cosh(x)cosh(x) dx}[/mm]
>  
> jetzt weiss ich ja [mm](cosh(x))^{2}[/mm] lässt sich auch schreiben
> als 1 - [mm](sinh(x))^{2}[/mm]

Hallo,

diesen Sachverhalt solltest Du nochmal auf seinen Wahrheitsgehalt prüfen...

Du kannst das natürlich integrieren, indem Du auf die e-Funktion zurückgreifst.

Gruß v. Angela


Bezug
        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 26.07.2008
Autor: schachuzipus

Hallo Surfer,

abgesehen von dem Fehler bei deiner Darstellung von [mm] $\cosh^2(x)$, [/mm] auf den Angela dich bereits hingewiesen hat, kannst du, wenn du's ohne diese Vereinfachung rechnen willst, mit der Definition von [mm] $\cosh(x)=\frac{e^x+e^{-x}}{2}$ [/mm] probieren, [mm] $\cosh^2(x)$ [/mm] ausrechnen und das verbleibende Intergal deiner partiellen Integraltion dann elementar berechnen.

Das gibt keinen länglichen Term ;-)



LG

schachuzipus

Bezug
                
Bezug
Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 26.07.2008
Autor: Surfer

Hi,

ah ok hatte mich oben verschrieben
also bisher hab ich es immer so gerechnet:

[mm] \integral_{}^{}{sinh(x)*sinh(x) dx} [/mm] = [sinh(x) cosh(x)] - [mm] \integral_{}^{}{1 dx} [/mm] - [mm] \integral_{}^{}{sinh(x) sinh(x) dx} [/mm]
= [1/2 cosh(x) sinh(x) - x/2]

Und meine Frage war nun wie ich es ohne diese vereinfachung rechnen würde!

lg Surfer

Bezug
                        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 26.07.2008
Autor: leduart

Hallo
warum was umstaendlicher machen, wenns auch einfach geht? Du hast doch schon 2 wege?
Aber integrier halt nochmal partiell, wenn es umstaendlich sein soll! Wenn man die Eigenschaft von fktnen, die man integrieren soll nicht ausnutzt, ist man ganz schoen....
du kannst auch [mm] x^3 [/mm] mit partieller integration oder mit substitution integrieren!
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de