www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Verständnisproblem
Verständnisproblem < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Do 21.05.2009
Autor: MattiJo

Aufgabe
Die Zufallsvariable Y beschreibe die Anzahl der Reisenden, die zu einem bestimmten Zeitpunkt am Schalter der deutschen Bahn im Bahnhof warten. Wir nehmen an, dass Y poissonverteilt ist mit Parameter [mm] \lambda, [/mm] d.h. Y ~ [mm] P(\lambda). [/mm] Außerdem beschreibe die Zufallsvariable X die Anzahl der Reisenden, die am Schalter freundlich bedient werden.
Falls Y=i Reisende am Schalter warten, sei die Wahrscheinlichkeit, dass X=j davon freundlich bedient werden, gegeben durch:

P(X=j | Y=i) = [mm] \vektor{i \\ j} (\bruch{1}{\lambda})^j [/mm] (1 - [mm] \bruch{1}{\lambda})^{i-j} \forall [/mm] j [mm] \in [/mm] {0, ... , i}

Bestimme die Wahrscheinlichkeit, dass j Reisende freundlich bedient werden.

Guten Abend,

ich habe lediglich ein Verständnisproblem zu obiger Aufgabe und weiß nicht wie ich da rangehen soll.
Gesucht ist die Wahrscheinlichkeit, dass j Reisende freundlich bedient werden, die ist doch aber eigentlich genau schon gegeben durch die Formel, oder etwa nicht?

Viele Grüße,

Matti

        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Fr 22.05.2009
Autor: abakus


> Die Zufallsvariable Y beschreibe die Anzahl der Reisenden,
> die zu einem bestimmten Zeitpunkt am Schalter der deutschen
> Bahn im Bahnhof warten. Wir nehmen an, dass Y
> poissonverteilt ist mit Parameter [mm]\lambda,[/mm] d.h. Y ~
> [mm]P(\lambda).[/mm] Außerdem beschreibe die Zufallsvariable X die
> Anzahl der Reisenden, die am Schalter freundlich bedient
> werden.
>  Falls Y=i Reisende am Schalter warten, sei die
> Wahrscheinlichkeit, dass X=j davon freundlich bedient
> werden, gegeben durch:
>  
> P(X=j | Y=i) = [mm]\vektor{i \\ j} (\bruch{1}{\lambda})^j[/mm] (1 -
> [mm]\bruch{1}{\lambda})^{i-j} \forall[/mm] j [mm]\in[/mm] {0, ... , i}
>  
> Bestimme die Wahrscheinlichkeit, dass j Reisende freundlich
> bedient werden.
>  Guten Abend,
>  
> ich habe lediglich ein Verständnisproblem zu obiger Aufgabe
> und weiß nicht wie ich da rangehen soll.
>  Gesucht ist die Wahrscheinlichkeit, dass j Reisende
> freundlich bedient werden, die ist doch aber eigentlich
> genau schon gegeben durch die Formel, oder etwa nicht?

Hallo,
die Formel liefert die BEDINGTE Wahrscheinlichkeit für die freundliche Bedienung von j Reisenden, nämlich unter der Bedingung, dass i Reisende anstehen.
Du sollst nun die Wahrscheinlichkeit OHNE irgendwelche Bedingungen ausrechnen (ich vermute mal, mit Bayes).
Gruß Abakus

>  
> Viele Grüße,
>  
> Matti


Bezug
                
Bezug
Verständnisproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Fr 22.05.2009
Autor: MattiJo

P (A|B) = [mm] \bruch{P(B|A) \cdot P(A)}{P(B)} [/mm]

Okay danke, ich habe jetzt mein P(A) --> Wahrscheinlichkeit, dass die Personen warten, und mein P(B|A) --> Wahrscheinlichkeit, dass die Personen warten UND freundlich bedient werden gegeben
aber was ist P(B) ? Das brauche ich doch auch noch, oder?

Bezug
                        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Fr 22.05.2009
Autor: abakus

Hallo,
die benötigst nicht direkt die Bayessche Formel, sondern die direkt damit in Zusammenhang stehende Formel der totalen Wahrscheinlichkeit.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de