www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vertauschen von Matrizen
Vertauschen von Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertauschen von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 04.03.2006
Autor: Rhia

Aufgabe
Es sei K ein Körper und [mm]A \in K^{n \times n}[/mm] für ein [mm]1 \le n \in \IN[/mm]. Weiter seien [mm]f,g \in K[X][/mm] zwei Polynome. Zeigen Sie, dass die Matrizen f(A) und g(A) vertauschbar sind, dass also
f(A)*g(A)=g(A)*f(A) ist.

Hallo

wie angekündigt hier noch meine zweite Aufgabe. Und auch hier finde ich kein Packan. Könnt ihr mir vielleicht helfen?

Bis bald

Rhia


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vertauschen von Matrizen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 17:58 Sa 04.03.2006
Autor: Pi3141

Bei solchen Aufgaben, musst du dir immer erst einmal überleben, was du überhaupt gegeben hast. Du hast zwei Polynome gegeben, die hier auf Matrizen operieren. Aber nicht auf allen Matrizen, sondern nur auf quadratische vom Grad kleiner gleich 1. Bei uns in der Vorlesung sind Matrizen minimal [mm] 1\times1 [/mm] groß, weshalb du nur diesen Fall untersuchen musst.
Du sollst jetzt zeigen, dass die beiden Polynome austauschbar sind. Das hat etwas mit der Multiplikation zweier Polynome zu tun. Also schreiben wir zuerst auf, was es bedeutet 2 Polynome zu multiplizieren.  Dann kannst du zeigen, dass tatsächlich f(A)*g(A)=g(A)*f(A) gilt.
Hinweis: Hier ist die Matrixmultiplikation tatsächlich mal kommutativ (ist ja [mm] 1\times1 [/mm] ). Musst du nur noch zeigen, bevor du das benutzt.

Wenn du Fragen zu dieser Antwort hast, kannst, du ja noch mal schreiben.


Bezug
                
Bezug
Vertauschen von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Sa 04.03.2006
Autor: felixf


> Bei solchen Aufgaben, musst du dir immer erst einmal
> überleben, was du überhaupt gegeben hast. Du hast zwei
> Polynome gegeben, die hier auf Matrizen operieren. Aber
> nicht auf allen Matrizen, sondern nur auf quadratische vom
> Grad kleiner gleich 1. Bei uns in der Vorlesung sind

Das stimmt nicht, die Matrizen sollen vom Grad groesser gleich 1 sein! (Falls da wirklich kleiner gleich $1$ stehen wuerde waer das schon richtig was du schreibst!)

LG Felix


Bezug
        
Bezug
Vertauschen von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Sa 04.03.2006
Autor: felixf


> Es sei K ein Körper und [mm]A \in K^{n \times n}[/mm] für ein [mm]1 \le n \in \IN[/mm].
> Weiter seien [mm]f,g \in K[X][/mm] zwei Polynome. Zeigen Sie, dass
> die Matrizen f(A) und g(A) vertauschbar sind, dass also
> f(A)*g(A)=g(A)*f(A) ist.
>  Hallo
>  
> wie angekündigt hier noch meine zweite Aufgabe. Und auch
> hier finde ich kein Packan. Könnt ihr mir vielleicht
> helfen?

Du brauchst, dass [mm] $A^n A^m [/mm] = [mm] A^m A^n$ [/mm] ist fuer ganze Zahlen $n, m [mm] \ge [/mm] 0$. Davon kannst du dich aber sicher schnell ueberzeugen :-)

Wenn du das hast, dann schreib doch $f = [mm] \sum_{i=0}^n a_i x^i$ [/mm] und $g = [mm] \sum_{j=0}^m b_j x^j$ [/mm] mit [mm] $a_i, b_j \in [/mm] K$. Dann kannst du $f(A) g(A)$ und $g(A) f(A)$ explizit ausrechnen, und da [mm] $\lambda A^k [/mm] = [mm] A^k \lambda$ [/mm] fuer alle [mm] $\lambda \in [/mm] K$ und $k [mm] \ge [/mm] 0$ ist siehst du schnell das beide Ausdruecke gleich sind.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de