www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilung bestimmen
Verteilung bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung bestimmen: Zweimaliger Würfelwurf
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 07.05.2012
Autor: bandchef

Aufgabe
Ein fairer Würfel wird zweimal geworfen. Es sei [mm] X_1 [/mm] die im ersten Wurf und [mm] X_2 [/mm] die im zweiten Wurf erzielte Augenzahl aus jeweils [mm] $\{ 1,2,...,6 \}. [/mm]

Ermitteln Sie die Verteilung von [mm] $Y:=max(X_1, X_2)$, [/mm] d.h. bestimmen Sie: $P(Y=k)$ für $k [mm] \in \{ 1,2,...,6 \}$ [/mm] oder [mm] $P(Y\leq [/mm] y)$ für $y [mm] \in \mathbb [/mm] R$

Hi Leute!

Ich hab hier einige Fragen zur obigen Aufgabe.

Ich hab mit der Aufgabe schon mal angefangen und das hier aufgeschrieben:

[mm] $(X_1, X_2) \Rightarrow$ [/mm]

[mm] $\underbrace{(1,1)}_{=1}, \underbrace{(1,2), (2,1), (2,2)}_{=3}, \underbrace{(3,1), (3,2), (3,3), (2,3), (1,3)}_{=5}$ [/mm]

[mm] $\underbrace{(4,1), (4,2), (4,3), (4,4), (3,4), (2,4), (1,4)}_{=7}, \underbrace{(5,1),(5,2),(5,3),(5,5),(4,5),(3,5),(2,5),(1,5)}_{=9}$ [/mm]

[mm] $\underbrace{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6), (5,6), (4,6), (3,6), (2,6), (1,6)}_{=11}$ [/mm]

[mm] $\Rightarrow \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{36} [/mm] = ?$

Wo ist dann hier die Verteilung zu sehen? Irgendwie kapier ich das Ganze nicht so :-(

        
Bezug
Verteilung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 07.05.2012
Autor: tobit09

Hallo bandchef,


> [mm](X_1, X_2) \Rightarrow[/mm]
>  
> [mm]\underbrace{(1,1)}_{=1}, \underbrace{(1,2), (2,1), (2,2)}_{=3}, \underbrace{(3,1), (3,2), (3,3), (2,3), (1,3)}_{=5}[/mm]
>  
> [mm]\underbrace{(4,1), (4,2), (4,3), (4,4), (3,4), (2,4), (1,4)}_{=7}, \underbrace{(5,1),(5,2),(5,3),(5,5),(4,5),(3,5),(2,5),(1,5)}_{=9}[/mm]
>  
> [mm]\underbrace{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6), (5,6), (4,6), (3,6), (2,6), (1,6)}_{=11}[/mm]

Zwar nicht lehrbuchmäßig aufgeschrieben, aber diese Überlegung werden wir noch brauchen.


> [mm]\Rightarrow \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{36} = ?[/mm]

Nein.


Die nötigen Schritte werden sein:

1. Wir benötigen eine Grundmenge [mm] $\Omega$ [/mm] und ein Wahrscheinlichkeitsmaß P darauf.

2. Wie sehen [mm] $X_1,X_2$ [/mm] und somit $Y$ aus? Guck dir dazu an, wie Zufallsgrößen formal definiert sind und (am besten anhand eines Beispiels aus der Vorlesung) wie die formale Definition zur anschaulichen Bedeutung von Zufallsgrößen passt.

3. $P(Y=k)$ ist eine abkürzende Schreibweise für [mm] $P(\{Y=k\})$. [/mm] Wie ist das Ereignis [mm] $\{Y=k\}$ [/mm] definiert?

4. Wie sehen [mm] $\{Y=k\}$ [/mm] und somit $P(Y=k)$ für $k=1,2,3,4,5,6$ konkret aus?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de