www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Verteilung der Summe
Verteilung der Summe < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung der Summe: Faltung bei Normalverteilung
Status: (Frage) beantwortet Status 
Datum: 22:43 Fr 14.12.2012
Autor: GeMir

Um zu zeigen, dass die Normalverteilung faltungsstabil ist, verwendet man die Faltungsformel [mm] $$f_{X_1+X_2}(z) [/mm] = [mm] \int_{-\infty}^{\infty}{f_{X_1}(t)f_{X_2}(z-t)dt}$$ [/mm]

Betrachtet man die Verteilung der Summe [mm] $X_1+X_2$ [/mm] wobei [mm] $X_1 \sim N(\mu_1, \sigma^2_1)$ [/mm] und [mm] $X_2 \sim N(\mu_2, \sigma^2_2)$ [/mm] so erhält man:

[mm] f_{X_1+X_2}(z) [/mm] = [mm] \int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\bigg(-\frac{(t-\mu_1)^2}{2\sigma^2_1}\bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\bigg(-\frac{(z-t-\mu_2)^2}{2\sigma^2_2}\bigg)dt} [/mm]

Meine Frage wäre: wie kommt man von dem obenstehenden Integral zu:

[mm] f_{X_1+X_2}(z) [/mm] = [mm] \int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\Bigg(-\frac{1}{2}\bigg(\frac{t}{\sigma_1}\bigg)^2\Bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\Bigg( -\frac{1}{2}\bigg( \frac{z-(\mu_1+\mu_2) - t}{\sigma_2} \bigg)^2 \Bigg)dt} [/mm]

Die Umformung sollte angeblich leicht sein, ich komme aber irgendwie überhaupt nicht darauf :/


        
Bezug
Verteilung der Summe: Mein Verschreiber korrigiert..
Status: (Antwort) fertig Status 
Datum: 23:49 Fr 14.12.2012
Autor: Marcel

Hallo,

> Um zu zeigen, dass die Normalverteilung faltungsstabil ist,
> verwendet man die Faltungsformel [mm]f_{X_1+X_2}(z) = \int_{-\infty}^{\infty}{f_{X_1}(t)f_{X_2}(z-t)dt}[/mm]
>  
> Betrachtet man die Verteilung der Summe [mm]X_1+X_2[/mm] wobei [mm]X_1 \sim N(\mu_1, \sigma^2_1)[/mm]
> und [mm]X_2 \sim N(\mu_2, \sigma^2_2)[/mm] so erhält man:
>
> [mm]f_{X_1+X_2}(z)[/mm] =
> [mm]\int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\bigg(-\frac{(t-\mu_1)^2}{2\sigma^2_1}\bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\bigg(-\frac{(z-t-\mu_2)^2}{2\sigma^2_2}\bigg)dt}[/mm]
>  
> Meine Frage wäre: wie kommt man von dem obenstehenden
> Integral zu:
>  
> [mm]f_{X_1+X_2}(z)[/mm] =
> [mm]\int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\Bigg(-\frac{1}{2}\bigg(\frac{t}{\sigma_1}\bigg)^2\Bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\Bigg( -\frac{1}{2}\bigg( \frac{z-(\mu_1+\mu_2) - t}{\sigma_2} \bigg)^2 \Bigg)dt}[/mm]
>  
> Die Umformung sollte angeblich leicht sein, ich komme aber
> irgendwie überhaupt nicht darauf :/

wenn man in
[mm] $$\int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\bigg(-\frac{(t-\mu_1)^2}{2\sigma^2_1}\bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\bigg(-\frac{(z-t-\mu_2)^2}{2\sigma^2_2}\bigg)dt}$$ [/mm]
mal [mm] $r:=t-\mu_1$ ($\Rightarrow dr=dt\,$ [/mm] sowie [mm] "$t=\infty$" $\gdw$ "$r=\infty$" [/mm] und [mm] "$t=-\infty$" $\gdw$ "$r=-\infty$") [/mm] substituiert, hat man das Gewünschte:
[mm] $$\int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\bigg(-\frac{(t-\mu_1)^2}{2\sigma^2_1}\bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\bigg(-\frac{(z-t-\mu_2)^2}{2\sigma^2_2}\bigg)dt}=\int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\bigg(-\frac{r^2}{2\sigma^2_1}\bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\bigg(-\frac{(z-\overbrace{r}^{=(t-\mu_1)}-\mu_1-\mu_2)^2}{2\sigma^2_2}\bigg)dr}$$ [/mm]
[mm] $$=\int_{-\infty}^{\infty}{\frac{1}{\sqrt{2\pi}\sigma_1}\exp\bigg(-\frac{1}{2}(r/\sigma_1)^2\bigg)\frac{1}{\sqrt{2\pi}\sigma_2}\exp\bigg(-\frac{1}{2}\left(\frac{z-(\mu_1\;+\;\mu_2)-r}{\sigma_2}\right)^2\bigg)dr}$$ [/mm]

Vermutlich hat sich da also ein Verschreiber bei Dir eingeschlichen (oder
ich habe mich irgendwo verrechnet, ich rechne das gleich nochmal nach...).


Edit: Habe meinen Verschreiber korrigiert...

Gruß,
  Marcel  

Bezug
                
Bezug
Verteilung der Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 Fr 14.12.2012
Autor: GeMir

Die obige Rechnung habe ich auf []dieser Seite gefunden.
Nach Substitution sieht's zwar meiner Meinung nach nicht aus, aber ich versuche sie anzuwenden...

Bezug
                        
Bezug
Verteilung der Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Fr 14.12.2012
Autor: Marcel

Hallo,

> Die obige Rechnung habe ich auf
> []dieser Seite
> gefunden.
>  Nach Substitution sieht's zwar meiner Meinung nach nicht
> aus, aber ich versuche sie anzuwenden...

doch: die Substitution [mm] $r=t-\mu_1$ [/mm] tut's - ich hatte da nur erst einmal
fälschlicherweise [mm] $+\mu_2$ [/mm] anstatt [mm] $-\mu_2$ [/mm] abgeschrieben. Hab's aber
korrigiert!

Also: Viel steckt da nicht dahinter. ;-)

Gruß,
  Marcel

Bezug
                                
Bezug
Verteilung der Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:58 Fr 14.12.2012
Autor: GeMir

Vielen Dank! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de