www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilung von Zufallsvariable
Verteilung von Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung von Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Mo 16.11.2009
Autor: MichaFCC

Aufgabe
Sei X eine geometrisch verteilte Zufallsvariable, d.h.  P(X=k) = [mm] (1-p)^{k-1}*p [/mm] , [mm] k\ge1, p\in(0, [/mm] 1). Bestimmen Sie die Verteilung der Zufallsvariablen
[mm] Y=\bruch{X}{2}*(1-(-1)^{X}) [/mm]

Hallo,
ich grübel jetzt schon seit einiger zeit über diese aufgabe nach, komm aber einfach icht auf einen lösungsalgorithmus.

die verteilung von X kann man ja leicht bestimmen. wenn ich mich nicht irre, ist das ja einfach nur die summe über alle P(X=k) (k größer gleich 1), also 1/p.

aber wie mache ich dies bei den "verschachtelten" bzw "verknüpften" zufallsvariablen?

Wäre nett wenn mir jemand den ansatz liefern könnte (also einen genauen algorithmus)

danke im vorraus für konstruktive antworten

mfg michafcc

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verteilung von Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 16.11.2009
Autor: Al-Chwarizmi


> Sei X eine geometrisch verteilte Zufallsvariable, d.h.  
> P(X=k) = [mm](1-p)^{k-1}*p[/mm] , [mm]k\ge1, p\in(0,[/mm] 1). Bestimmen Sie
> die Verteilung der Zufallsvariablen
>  [mm]Y=\bruch{X}{2}*(1-(-1)^{X})[/mm]
>  Hallo,
>  ich grübel jetzt schon seit einiger zeit über diese
> aufgabe nach, komm aber einfach icht auf einen
> lösungsalgorithmus.
>  
> die verteilung von X kann man ja leicht bestimmen. wenn ich
> mich nicht irre, ist das ja einfach nur die summe über
> alle P(X=k) (k größer gleich 1), also 1/p.    [verwirrt]  [kopfschuettel]

siehe unten !

> aber wie mache ich dies bei den "verschachtelten" bzw
> "verknüpften" zufallsvariablen?
>  
> Wäre nett wenn mir jemand den ansatz liefern könnte (also
> einen genauen algorithmus)
>  
> danke im vorraus für konstruktive antworten
>  
> mfg michafcc


Hallo Micha,

die Funktion Y sieht wilder aus als sie ist. Sie liefert
einfach 0 oder X , je nachdem ob X gerade oder
ungerade ist.

Die kumulierte Verteilungsfunktion ist dann

[mm] F_Y(n)=\sum_{k=1}^{n}P(Y=k) [/mm]


LG     Al-Chw.



Bezug
                
Bezug
Verteilung von Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 16.11.2009
Autor: MichaFCC

verwechselst du nicht X und Y?

und wo geht in der gleichung von dir dann die zähldichte von X ein (1-p bzw. p)

das mit 0 und ungerade zahlen hab ich auch bemerkt (hätte ich vlt gleich mit hinschreiben solln -.-), aber wollte halt den rechnerischen weg und nicht den mit hinsehen^^ und es fehlt ja dann immernoch der einfluss von der geometrischen verteilung von X.

sry falls ich gerade total auf den schlauch stehe....

mfg michafcc

Bezug
                        
Bezug
Verteilung von Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 16.11.2009
Autor: Al-Chwarizmi


> verwechselst du nicht X und Y?

Nein. Die Formel zur Berechnung der (kumulierten) Vertei-
lungsfunktion gilt analog für X wie für Y.
  

> und wo geht in der gleichung von dir dann die zähldichte
> von X ein (1-p bzw. p)

diesen Schritt des Einsetzens wollte ich dir überlassen
  

> das mit 0 und ungerade zahlen hab ich auch bemerkt (hätte
> ich vlt gleich mit hinschreiben solln -.-), aber wollte
> halt den rechnerischen weg und nicht den mit hinsehen^^ und
> es fehlt ja dann immernoch der einfluss von der
> geometrischen verteilung von X.


Es ist also   $\ [mm] P(Y=k)=\begin{cases} 0 & \mbox{falls } k \mbox{ gerade} \\ (1-p)^{k-1}*p & \mbox{falls } k \mbox{ ungerade} \end{cases}$ [/mm]

Für die Verteilungsfunktion von Y (ich nenne sie [mm] F_Y) [/mm]
gilt also:

       $\ [mm] F_Y(n)=\underset{k\ ungerade}{\sum_{k=1}^{n}}(1-p)^{k-1}*p$ [/mm]

Diese Summe gilt es noch zu berechnen. Es ist natürlich
auch eine geometrische Summe. [mm] F_Y(n) [/mm] ist für eine ungerade
Zahl n und für die unmittelbar darauf folgende gerade Zahl
gleich groß. Deshalb kann man sich für die Berechnung
zunächst auf ungerade n beschränken.


LG     Al-Chw.




Bezug
                                
Bezug
Verteilung von Zufallsvariable: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Mo 16.11.2009
Autor: MichaFCC

alles klaro jetzt hab ichs auch verstanden ;-)

ein riesen dankeschön an dich!!!!!!!!!!!!!!!

mfg michafcc

Bezug
                                        
Bezug
Verteilung von Zufallsvariable: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Di 17.11.2009
Autor: Al-Chwarizmi


> alles klaro jetzt hab ichs auch verstanden ;-)
>  
> ein riesen dankeschön an dich!!!!!!!!!!!!!!!
>  
> mfg michafcc


15 Ausrufzeichen - das muss ich erst verarbeiten ...

Wenn ich die hinter die Anzahl meiner Tage setzen
kann, ist das ja unerhört !

LG     Al-Chw.    :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de