www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungen
Verteilungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:59 Fr 03.02.2012
Autor: chesn

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
1. Sei X\sim Exp(\lambda). Für welche \sigma >0, \mu \ge 0 hat \sigma X+\mu wieder eine Exponential-Verteilung?



Hallo! Mir fehlt bei der Aufgabe der Durchblick, wäre nett wenn jemand Tipps geben könnte.

Die Dichte der Exponentialverteilung:

f(t)=$\{^{\ \lambda*exp(-\lambda*t) \ \ falls \ t \ge 0}_{ \ 0  \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \  \ \ \ falls \ t < 0}$

1. Im Skript steht folgendes: Sei X eine stetig verteilte Zufallsvariable mit dichte f_X und Werten in einem offenen Intervall I \subset \IR. Sei außerdem $u:I\to J$ ein Diffeomorphismus. Dann hat Y:=u(X) auf J die Dichte:

f_Y(y)=f_X(u^{-1}(y))*|(u^{-1})'(y)|.

In der Aufgabe ist u(x)=\sigma*x+\mu und damit u^{-1}(y)=\bruch{y-\mu}{\sigma} und weiter (u^{-1})'(y)=\bruch{1}{\sigma}.

f_Y(y)=f_X(\bruch{y-\mu}{\sigma})*\bruch{1}{\sigma}=\lambda*exp(-\lambda*(\bruch{y-\mu}{\sigma}))*\bruch{1}{\sigma}

Das ganze muss jetzt wieder die Dichte der Exponentialverteilung sein.
Muss ich also $ \sigma =1 $ und \mu beliebig wählen (wegen y-\mu=x mit \sigma=1) oder verstehe ich da was falsch??

Danke schonmal für jede hilfreiche Antwort!! :)

Gruß
chesn

        
Bezug
Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Fr 03.02.2012
Autor: Gonozal_IX

Huhu,

dein Ansatz ist nicht schlecht. Am Schluß hast du jedoch einen Denkfehler.

Es ist ja nicht verlangt, dass Y Exponentialverteilt zum Parameter [mm] \lambda [/mm] sein muss.

D.h. die Dichte kann bspw. auch die Form [mm] $\alpha*e^{-\alpha*y}$ [/mm] haben.

Nun schau dir deine Dichtefunktion nochmal an und versuche sie, auf diese Form umzuformen. So wirst du auf eine Einschränkung für [mm] \mu [/mm] kommen. Wie siehts mit [mm] $\sigma$ [/mm] aus?

Und zu guter letzt noch ein (für mich schnellerer) Weg, um an die Dichte zu kommen:

Es gilt ja für die Verteilung von Y:

[mm] $\IP(Y \le [/mm] y)= [mm] \IP(\sigma*X [/mm] + [mm] \mu \le [/mm] y) = [mm] \IP(X \le \bruch{y-\mu}{\sigma})$ [/mm]

Und damit für die Dichtefunktion:

[mm] $f_Y(y) [/mm] = [mm] \left(\IP(Y \le y)\right)' [/mm] = [mm] \left(\IP(X \le \bruch{y-\mu}{\sigma})\right)' [/mm] = [mm] f_X(\bruch{y-\mu}{\sigma})*\bruch{1}{\sigma}$ [/mm]

Einsetzen liefert die gleiche Lösung wie von dir :-)

MFG,
Gono.

Bezug
                
Bezug
Verteilungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 06.02.2012
Autor: chesn

Okay, vielen Dank erstmal.

Ich komme auf Folgendes:

[mm] f_Y(y)=\lambda*exp(-\lambda*\bruch{y-\mu}{\sigma}))*\bruch{1}{\sigma}=\bruch{\lambda}{\sigma}*exp(-\bruch{\lambda}{\sigma}*(y-\mu)) [/mm]

Da in der Original-Exponentialverteilung der Parameter $ [mm] \lambda [/mm] > 0 $ ist, muss also hier [mm] \sigma [/mm] > 0 und [mm] \mu=0 [/mm] sein, damit y allein steht.

Richtig so??

Gruß
chesn

Bezug
                        
Bezug
Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mo 06.02.2012
Autor: Gonozal_IX

Hiho,

> Okay, vielen Dank erstmal.
>  
> Ich komme auf Folgendes:
>  
> [mm]f_Y(y)=\lambda*exp(-\lambda*\bruch{y-\mu}{\sigma}))*\bruch{1}{\sigma}=\bruch{\lambda}{\sigma}*exp(-\bruch{\lambda}{\sigma}*(y-\mu))[/mm]

[ok]

> Da in der Original-Exponentialverteilung der Parameter
> [mm]\lambda > 0[/mm] ist, muss also hier [mm]\sigma[/mm] > 0 und [mm]\mu=0[/mm] sein,
> damit y allein steht.

[ok]

Da [mm] $\sigma [/mm] > 0$  vorausgesetzt war, gehen also alle gegeben.


MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de