www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktion
Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Di 20.10.2009
Autor: piccolo1986

Aufgabe
Sei P ein beliebiger, aber fester Punkt auf dem Einheitskreis [mm] K:=\{(x;y)\in\IR^{2}:x^{2}+y^{2}=1\}. [/mm] Der Punkt Q werde rein zufällig auf K platziert, d.h. jeder Punkt auf K ist gleichwahrscheinlich. Dabei bezeichne die Zufallsvariable X den Abstand zwischen P und Q.
(a) Bestimmen Sie die Verteilungsfunktion der Zufallsvariablen X.
(b) Mit welcher Wahrscheinlichkeit ist der besagte Abstand größer als 1?

Hey ich hab die obige Aufgabe, aber gar keine idee, wie ich die Verteilungsfunktion von X bekommen soll.

kann ich dabei zudem den Abstand wie bei vektoren im 2 dimensionalen benutzen???

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 04:13 Mi 21.10.2009
Autor: felixf

Hallo!

> Sei P ein beliebiger, aber fester Punkt auf dem
> Einheitskreis [mm]K:=\{(x;y)\in\IR^{2}:x^{2}+y^{2}=1\}.[/mm] Der
> Punkt Q werde rein zufällig auf K platziert, d.h. jeder
> Punkt auf K ist gleichwahrscheinlich. Dabei bezeichne die
> Zufallsvariable X den Abstand zwischen P und Q.

>

>  (a) Bestimmen Sie die Verteilungsfunktion der
> Zufallsvariablen X.
>  (b) Mit welcher Wahrscheinlichkeit ist der besagte Abstand
> größer als 1?
>
>  Hey ich hab die obige Aufgabe, aber gar keine idee, wie
> ich die Verteilungsfunktion von X bekommen soll.
>  
> kann ich dabei zudem den Abstand wie bei vektoren im 2
> dimensionalen benutzen???

Den musst du sogar benutzen.

Nun, zu $X$. Erstmal: $X$ nimmt nur Werte zwischen 0 und 2 (maximaler Abstand zweier Punkte auf einem Kreis mit Radius 1) an: es gilt also [mm] $F^X(x) [/mm] = 0$ fuer $x [mm] \le [/mm] 0$ und [mm] $F^X(x) [/mm] = 1$ fuer $x [mm] \ge [/mm] 2$.

Sei nun $x [mm] \in [/mm] (0, 2)$. Dann ist [mm] $F^X(x) [/mm] = P(X [mm] \le [/mm] x) = [mm] \frac{\int_K 1_{\|z - P\|\le x} dz}{\int_K dz} [/mm] = [mm] \frac{\int_X dz}{\int_K dz}$, [/mm] wobei [mm] $1_{\|z - P\|\le x}$ [/mm] die Indikatorfunktion der Menge $X = [mm] \{ z \in K \mid \|z - P\| \le x \}$ [/mm] ist. Wir nehmen jetzt einfach mal $P = (1, 0)$.

Offenbar ist [mm] $\int_K [/mm] dz = 2 [mm] \pi$. [/mm] Also, wieviel des Kreises liegt in $X$? Nun ist $X = [mm] \{ z = (z_1, z_2) \in K \mid (z_1 - 1)^2 + z_2 \le r^2 \}$. [/mm] Kannst du jetzt die Schnittpunkte zwischen dem Kreis [mm] $(z_1 [/mm] - [mm] 1)^2 [/mm] + [mm] z_2^2 [/mm] = [mm] r^2$ [/mm] und [mm] $z_1^2 [/mm] + [mm] z_2^2 [/mm] = 1$ bestimmen? (Da $0 < r < 2$ gibt es genau zwei.)

LG Felix


Bezug
                
Bezug
Verteilungsfunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:19 Mi 21.10.2009
Autor: piccolo1986

Also ich versteh schon, was du im großen und ganzen meinst mit, wie du die verteilungsfunktion definierst, wo die 1 und 0 ist. allerdings haben wir die indikatorfunktion nicht eingeführt, bzw. weiss ich nicht so recht, wie ich damit rechnen soll

Bezug
                        
Bezug
Verteilungsfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 23.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de