www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktion
Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Mi 27.10.2010
Autor: stevarino


Hallo

Bräuchte wieder eure Hilfe ob ich das richtig verstehe

Gegeben ist eine Wahrscheinlichkeitsdichtefunktion siehe Anhang.
Daraus lese ich mir Abschnitte heraus

[mm]-\infty\leq t \leq 4ms[/mm] 0
[mm]4ms\leq t \leq8ms[/mm] [mm]\bruch{1}{t}[/mm]
[mm]8ms\leq t \leq 10,4548[/mm] 0,125

[mm]F_{X}(\xi)=\int_{-\infty}^{\xi} p_{X}(\xi)d\xi=\integral_{}^{}{\bruch{1}{t}+0,125} dt=ln(t)+0,125*t[/mm]
Jetzt muss aber für eine Verteilungsfunktion gelten
[mm]0\leq F_{X}(\xi) <1[/mm]
[mm]F_{X}(-\infty)=0[/mm]
[mm]F_{X}(+\infty)=1[/mm]
[mm]\xi_{a} < \xi_{b} \Rightarrow F_{X}(\xi_{a})
Was für meine Verteilungsfunktion aber überhaupt nicht zutrifft
Ist jetzt mein Rechenweg falsch oder sind die Eigenschaften der Verteilungsfunktion nicht erfüllt??



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Fr 29.10.2010
Autor: Walde

Hi Stevarino,

zunächst mal: das angehängte Bild der Dichtefkt. ist ganz schön irreführend. Da bei t=4 ja f(t)=0,25 sein sollte,der Fktwert bei deinem Bild aber ca. 0,19 ist. Und es eher nach f(3)=0,25 aussieht. Die Abschnitte, die du angegeben hast, scheinen zu stimmen, aber aus dem Bild kann man die eigentlich nicht herauslesen...

Ok, jetzt aber zur Lösung:

da deine Dichtefkt abschnittsweise definiert ist, mit

[mm] f(t)=\begin{cases} 0, & \mbox{für } t<4 \\ 1/t, & \mbox{für } 4\le t\le 8 ,\\ 0,125 & \mbox{für } 8
muss deine Verteilungsfunktion auch abschnittsweise definiert sein.

[mm] F_X(x)=\begin{cases} 0, & \mbox{für } x<4 \\ \integral_{4}^{x}{\bruch{1}{t}dt}= ln(x)-ln(4), & \mbox{für } 4\le x\le 8 ,\\ \integral_{4}^{8}{\bruch{1}{t}dt+\integral_{8}^{x}0,125 dt}= ln(2)+0,125*(x-8) & \mbox{für } 8
Das ln(2) kommt von [mm] ln(8)-ln(4)=ln\bruch{8}{4}. [/mm]

Und da [mm] ln(2)+0,125*(10,4548-8)\approx [/mm] 1 (nur ungefähr weil 10,4548 gerundet ist) ,ist auch [mm] F_X(x)=1 [/mm] für [mm] x\to\infty [/mm]

Alles klar?

LG Walde

Bezug
                
Bezug
Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Sa 30.10.2010
Autor: stevarino


Hallo Walde

Danke erst mal für deine Antwort nur das ich das jetzt richtig verstehe

Mein erstes Integral würde lauten[mm]\integral_{-\infty}^{x}{0 dt}[/mm]
das zweite dann[mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{x}{\bruch{1}{t} dt}[/mm]
das drittel    [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{x}{0,125 dt}[/mm]
das vierte [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{10,4548}{0,125 dt}+\integral_{10,4548}^{x}{0dt}[/mm]

Hab ich das Schema so richtig verstanden??


lg Stevo


Bezug
                        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Sa 30.10.2010
Autor: Disap

Hallo.

> Danke erst mal für deine Antwort nur das ich das jetzt
> richtig verstehe
>  
> Mein erstes Integral würde lauten[mm]\integral_{-\infty}^{x}{0 dt}[/mm]
>  
> das zweite dann[mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{x}{\bruch{1}{t} dt}[/mm]
>  
> das drittel    [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{x}{0,125 dt}[/mm]
>  
> das vierte [mm]\integral_{-\infty}^{4}{0 dt}+\integral_{4}^{8}{\bruch{1}{t} dt}+\integral_{8}^{10,4548}{0,125 dt}+\integral_{10,4548}^{x}{0dt}[/mm]
>  
> Hab ich das Schema so richtig verstanden??

Das hast du richtig verstanden.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de