www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktion (stetig)
Verteilungsfunktion (stetig) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion (stetig): Untersuchung von VF
Status: (Frage) überfällig Status 
Datum: 14:40 Mi 05.12.2007
Autor: tillll

a) Wie untersucht man so was, bzw. welche Zusatzbedingungen müssen aufgestellt werden?

Mein Ansatz:

Grundlage:
Dichte muss erfüllen:
1.) monoton steigend
2.) lim [mm] (t->\infty)=1 [/mm] und lim [mm] (t->-\infty)=0 [/mm]
3.) rechtsseitig stetig

Lösungsversuch:
i) F(X) und G(X) haben den Wert 1, da es ansonsten keine Dichten wären.
-> da die Konstanten [mm] \alpha [/mm] und [mm] \beta [/mm] > 0 sind, kann F1(x) nur >= 0 sein. Somit ist das ganze schon mal stetig.

ii) ?

iii) ?

b)
Die Konstante c muss so gewählt werden, dass F2(x) = 1 ist
- Aber wie gehe ich da ran? Der Hinweis bringt mich auch nicht weiter (wüsste gar nicht, wie ich das berechnen soll)

Dank
Tilman    


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Verteilungsfunktion (stetig): Aufgabe?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Mi 05.12.2007
Autor: mathmetzsch

Hallo,
> a) Wie untersucht man so was, bzw. welche Zusatzbedingungen
> müssen aufgestellt werden?

Wie untersucht man was? Kannst du bitte die Aufgabe noch ergänzen, sonst kann dir hier niemand helfen! ;-)

>  
> Mein Ansatz:
>  
> Grundlage:
>  Dichte muss erfüllen:
>  1.) monoton steigend
>  2.) lim [mm](t->\infty)=1[/mm] und lim [mm](t->-\infty)=0[/mm]
>  3.) rechtsseitig stetig
>  
> Lösungsversuch:
>  i) F(X) und G(X) haben den Wert 1, da es ansonsten keine
> Dichten wären.
>  -> da die Konstanten [mm]\alpha[/mm] und [mm]\beta[/mm] > 0 sind, kann F1(x)

> nur >= 0 sein. Somit ist das ganze schon mal stetig.
>  
> ii) ?
>  
> iii) ?
>  
> b)
>  Die Konstante c muss so gewählt werden, dass F2(x) = 1 ist
> - Aber wie gehe ich da ran? Der Hinweis bringt mich auch
> nicht weiter (wüsste gar nicht, wie ich das berechnen
> soll)
>  
> Dank
>  Tilman    
>  

Grüße, Daniel


Bezug
                
Bezug
Verteilungsfunktion (stetig): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Mi 05.12.2007
Autor: tillll

Aufgabe habe ich als Anhang hochgeladen.

Danke und Gruß
Tilman

Bezug
        
Bezug
Verteilungsfunktion (stetig): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:19 Do 06.12.2007
Autor: marcsn

Hallo,

du meinst doch sicherlich nicht Dichte sondern Verteilungsfunktion oder nicht ;) ?

Was eine Verteilungsfunktion für Bedingungen erfüllen muss hast du ja oben stehen und das gilt es zu überprüfen.

Da nach Vorraussetzung F und G bereits Verteilungsfunktionen sind und beide somit monoton wachsend ist, gilt dies auch für die Verknüpfung dieser beiden also für F1(x).



Da F,G Vert. Funktionen ist ihr Grenzwert 1 für t -> unendlich und somit gilt :

[mm] lim (t->\infty)F_1(t) = lim(t->\infty)(\alpha F(t) + \beta G(t)) = \alpha + \beta [/mm]

und dies muss 1 sein und somit muss für [mm]\alpha [/mm] und [mm]\beta[/mm] gelten: [mm]\alpha +\beta = 1[/mm]


Analog folgt : [mm] lim (t->-\infty)F_1(t) = \alpha \cdot 0 + \beta \cdot 0 = 0[/mm]
dürfe ja klar sein...

Bei dem rechtsseitig stetig müsste das genau so gehen wenn ich mich nicht irre bin mir aber nicht ganz sicher also :

[mm] lim (t->a)F_1(t) = \alpha \cdot lim (t->a)F(t) + \beta \cdot lim (t->a)G(t) = \alpha F(a) + \beta G(a) = F_1(a)[/mm]

Und das gilt für Alpha oder Beta ungleich 0 aber hier bin ich mir nicht sicher wie es von Alpha und beta abhängt..


Dies ist ja auch nur eine Mitteilung keine Antwort :)


Gruß von Münster nach Münster :)

Marc

Bezug
        
Bezug
Verteilungsfunktion (stetig): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 So 09.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de