www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:38 Do 11.11.2004
Autor: Mathe-Genius

Hallo!

Ich hab irgendwie Probleme mit den Verteilungsfunktionen. Vielleicht könnt ihr mir weiterhelfen? Ich soll folgende Aufgaben lösen:
1.) Sei F: x->Q(]- [mm] \infty [/mm] ,x[) die Verteilungsfunktion eines Wahrscheinlichkeitsmaßes  [mm] \mu [/mm] auf ( [mm] \IR [/mm] ,B). Stellen sie für a,b  [mm] \in \IR, [/mm] a [mm] \le [/mm] b
Q(]- [mm] \infty [/mm] ,b]) , Q([a,b[), Q(]a,b[), Q(]a,b]), Q([a,b]), Q([a, [mm] \infty[), [/mm] Q(]a, [mm] \infty[), [/mm] Q({a})
durch F dar und beweisen sie diese Darstellung stellvertretend für Q([a,b]).

2.) F sei Vertelungsfunktion auf ( [mm] \IR [/mm] ,B). Zeige: Es gibt eindeutige Verteilungsfunktionen [mm] F_{s} [/mm] , [mm] F_{d} [/mm] und eindeutiges [mm] \alpha \in [/mm] [0,1], so dass F=(1- [mm] \alpha)*F_{s}+\alpha*F_{d} [/mm]
und [mm] F_{s} [/mm] stetig sowie [mm] F_{d} [/mm] diskret ist.

Bei der ersten Aufgabe habe ich hinbekommen, dass Q([a,b[) darstellbar ist durch F(b)-F(a). Aber bei den anderen weiß ich einfach nicht weiter. Und bei der 2. habe ich gar keinen Durchblick.
Wäre supi, wenn mir jemand helfen könnte.

Danke, Jacky

        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mi 17.11.2004
Autor: Stefan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Jacky!

Zur ersten Aufgabe:

Man geht die so an:

Aus

$F(x) = Q(]- \infty,x[)$

folgt:

$Q(]-\infty,b]) = \lim\limits_{n \to \infty} Q(}-\infty,b + \frac{1}{n}]) = \lim\limits_{n \to \infty} f(b+ \frac{1}{n}) = F(b+)$,

$Q([a,b[) = Q(]-\infty,b[) - Q(]-\infty,a[) = F(b) - F(a)$,

$Q(]a,b[) = Q(]-\infty,b[) - Q(]-\infty,a]) = F(b) - \lim\limits_{n \to \infty} F(a + \frac{1}{n}) = F(b) - F(a+)$,

usw.

Zur zweiten Aufgabe:

Es gilt:

$F(x) = F(x+) - (F(x+)-F(x))$.

Die Funktion $x \mapsto F(x+)$ ist monoton wachsend und stetig (da $F$ linksseitig stetig war), die Funktion $x \mapsto F(x+) - F(x)$ monoton wachsend und diskret (dies sind gerade die (abzählbaren!) Sprungstellen von $F$).

Es sei

$\lim\limits_{x \to \infty} F(x+) = \alpha$.

Dann ist

$F_d = \frac{F(x+)}{\alpha}$

eine stetige Verteilungsfunktion und wegen

$\lim\limits_{x \to \infty} (F(x+) - F(x)) = \alpha - 1$

ist

$F_s = \frac{F(x+)-F(x)}{\alpha-1}$

eine diskrete Verteilungsfunktion.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de