www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Vielfache von Matrizen
Vielfache von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vielfache von Matrizen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:59 So 02.06.2013
Autor: ewulution

Aufgabe
Sei [mm] n\in\IN>0 [/mm] und [mm] M\in Mn(\IQ) [/mm] eine Matrix mit [mm] M^3 [/mm] - [mm] 2E_{n} [/mm] = 0

(a) Zeigen Sie, dass n ein Vielfaches von 3 ist.

Meine Idee ist nun die folgende:

Da ich zeigen muss das es ein Vielfaches von 3 ist, muss gelten:
[mm] M\inM_{3n}(\IQ) [/mm] mit [mm] M^3 [/mm] - [mm] 2E_{3n} [/mm] = 0
Dies will ich nun mit vollständiger Induktion zeigen.
(I.A.) Für n=1 Ist klar da mein so eine Matrix finden kann für die das gilt
(I.V.) [mm] M^3-2E_{3n} [/mm]
(I.S.) n nach n+1
         [mm] M\inM_{3(n+1)}(\IQ) [/mm] mit [mm] M^3 [/mm] - [mm] 2E_{3(n+1)} [/mm]
         [mm] M\inM_{3n+3}(\IQ) [/mm] mit  [mm] M^3 [/mm] - [mm] 2E_{3n+3} [/mm]

und jetzt weiß ich nicht mehr weiter. Ich weiß nicht wie ich meine I.V. verwenden kann.
Ist den mein Ansatz überhaupt richtig so?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vielfache von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mo 03.06.2013
Autor: felixf

Moin!

> Sei [mm]n\in\IN>0[/mm] und [mm]M\in Mn(\IQ)[/mm] eine Matrix mit [mm]M^3[/mm] - [mm]2E_{n}[/mm]
> = 0
>  
> (a) Zeigen Sie, dass n ein Vielfaches von 3 ist.
>  Meine Idee ist nun die folgende:
>  
> Da ich zeigen muss das es ein Vielfaches von 3 ist, muss
> gelten:
>  [mm]M\inM_{3n}(\IQ)[/mm] mit [mm]M^3[/mm] - [mm]2E_{3n}[/mm] = 0
>  Dies will ich nun mit vollständiger Induktion zeigen.

Was hat das mit der Aufgabe zu tun? Und was willst du da "zeigen"?

Du musst zeigen: ist $M [mm] \in M_n(\IQ)$ [/mm] eine Matrix mit [mm] $M^3 [/mm] - 2 [mm] E_n [/mm] = 0$, so ist $n$ ein Vielfaches von 3.

Du nimmst also an, dass $M$ eine $n [mm] \times [/mm] n$-Matrix mit Koeffizienten aus [mm] $\IQ$ [/mm] ist, die [mm] $M^3 [/mm] = 2 [mm] E_n$ [/mm] erfuellt. Was kannst du jetzt ueber das Minimalpolynom von $M$ sagen? Was bedeutet das fuer die Diagonalisierbarkeit ueber [mm] $\IC$? [/mm] Damit solltest du weitermachen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de