www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Vielfachsummendarstellung=>ggt
Vielfachsummendarstellung=>ggt < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vielfachsummendarstellung=>ggt: tipp
Status: (Frage) beantwortet Status 
Datum: 20:05 Fr 16.11.2012
Autor: grafzahl123

Aufgabe
Beweise oder widerlege:
ax+by=1 => ggt(a,b)=1  mit x,y [mm] \in \IZ [/mm]

Hallo,
ich hab mir n paar beispiele überlegt um zu gucken ob ein einfaches gegenbeispiel existiert. hab leider keins gefunden :-( was dann wohl heißt, dass die aussage richtig ist und man sie beweisen muss.
ich dachte man könnte über die primfaktorzerlegungvon a und b agumentieren, dass beide keine gemeinsamen primfaktoren haben und somit der ggt(a,b)=1 sein muss. aber irgendwie hört sich das sehr schwammig an.

hat vielleicht jemand nen tipp, wie man da noch anders ran gehen kann?
wäre auf jeden fall dankbar für ne gute idee.

schöne grüße,
grafzahl123

        
Bezug
Vielfachsummendarstellung=>ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Fr 16.11.2012
Autor: Schadowmaster

moin,

Um die Aussage schön zu zeigen solltest du folgendes zeigen oder (aus der Vorlesung zB) wissen - jeweils für alle $a,b,x,y,z [mm] \in \IZ$ [/mm] und [mm] $\mid$ [/mm] als Zeichen für "teilt":
1. $ggT(a,b) [mm] \mid [/mm] a$ sowie $ggT(a,b) [mm] \mid [/mm] b$
2. Aus $x [mm] \mid [/mm] y$ folgt $x [mm] \mid [/mm] y*z$
3. Aus $x [mm] \mid [/mm] y$ und $x [mm] \mid [/mm] z$ folgt $x [mm] \mid [/mm] (y+z)$

Wenn du die drei Aussagen hast so kannst du etwas sehr feines für deinen $ggT$ folgern, wodurch er 1 sein muss.

lg

Schadow

Bezug
                
Bezug
Vielfachsummendarstellung=>ggt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Fr 16.11.2012
Autor: grafzahl123

danke erstmal für deine antwort!

ich hab das mal versucht:
1|a und 1|b
=> 1|a*x und 1|b*y   , mit x,y [mm] \in \IZ [/mm]
=> 1|a*x+b*y

aber damit hab ich ja noch nicht gezeigt, dass der ggt(a,b)=1 sein muss, oder? oder hab ich deinen tipp falsch interpretiert?

Bezug
                        
Bezug
Vielfachsummendarstellung=>ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Fr 16.11.2012
Autor: reverend

Hallo grafzahl,

> ich hab das mal versucht:
>  1|a und 1|b

Das ist trivial. Daraus wird nichts zu folgern sein.

>  => 1|a*x und 1|b*y   , mit x,y [mm]\in \IZ[/mm]

>  => 1|a*x+b*y

>  
> aber damit hab ich ja noch nicht gezeigt, dass der
> ggt(a,b)=1 sein muss, oder? oder hab ich deinen tipp falsch
> interpretiert?

So siehts aus.
Was Du da gerade beweisen willst/sollst, ist das [mm] [http://de.wikipedia.org/wiki/Lemma_von_B%C3%A9zout] [/mm] Lemma von Bézout [/url]. Bei dem Link steht auch ein Beweis. Versuch den mal nachzuvollziehen und dann für [mm] \ggT{(a,b)}=1 [/mm] zu vereinfachen. Dann kommst Du bestimmt auch darauf, wozu der Tipp gut war.

Grüße
reverend


Bezug
                                
Bezug
Vielfachsummendarstellung=>ggt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Fr 16.11.2012
Autor: grafzahl123

danke für den tipp!

okay, dann auf ein neues :-)
wir haben d:=ax+by mit x,y aus Z,  dann folgt daraus, dass gilt ggt(a,b)|a und ggt(a,b)|b und ggt(a,b)|d. da d=1 folgt daraus, dass ggt(a,b)|1 gilt. also ist ggt(a,b)=1

vielleicht so?

Bezug
                                        
Bezug
Vielfachsummendarstellung=>ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Fr 16.11.2012
Autor: reverend

Hallo nochmal,

> okay, dann auf ein neues :-)
>  wir haben d:=ax+by mit x,y aus Z,  dann folgt daraus, dass
> gilt ggt(a,b)|a und ggt(a,b)|b und ggt(a,b)|d. da d=1 folgt
> daraus, dass ggt(a,b)|1 gilt. also ist ggt(a,b)=1
>  
> vielleicht so?

Alles richtig. Das blau Markierte kannst Du sogar noch weglassen.

Eine übrigens selten beachtete Tatsache ist, dass aus d=1 auch folgt: [mm] \ggT{(x,y)}=1. [/mm] Diese Beobachtung ist manchmal (zugegeben selten) auch nützlich.

Unter Beibehaltung Deiner Beweisstruktur würde ich übrigens [mm] g:=\ggT{(a,b)} [/mm] definieren mit [mm] a=g*\alpha [/mm] und [mm] b=g*\beta. [/mm] Dann ist [mm] d=ax+by=g\alpha{x}+g\beta{y}=g(\alpha{x}+\beta{y}). [/mm] Also gilt $g|d$. Aus $d=1$ folgt daher $g=1$.

Grüße
reverend


Bezug
        
Bezug
Vielfachsummendarstellung=>ggt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Fr 16.11.2012
Autor: abakus


> Beweise oder widerlege:
>  ax+by=1 => ggt(a,b)=1  mit x,y [mm]\in \IZ[/mm]

Hallo,
indirekt geht das schnell.
Annahme: ggT(a,b)=k mit k>1
Daraus folgt
a=m*k und b=n*k (mit teilerfremden m,n [mm]\in \IZ[/mm]).
Dann ist ax+by=k(mx+ny) durch k teilbar und kann somit nicht 1 sein.

Gruß Abakus

EDIT: Ich sehe gerade, dass das so ziemlich der bereits vorgestellten Variante entspricht.

>  Hallo,
>  ich hab mir n paar beispiele überlegt um zu gucken ob ein
> einfaches gegenbeispiel existiert. hab leider keins
> gefunden :-( was dann wohl heißt, dass die aussage richtig
> ist und man sie beweisen muss.
>  ich dachte man könnte über die primfaktorzerlegungvon a
> und b agumentieren, dass beide keine gemeinsamen
> primfaktoren haben und somit der ggt(a,b)=1 sein muss. aber
> irgendwie hört sich das sehr schwammig an.
>  
> hat vielleicht jemand nen tipp, wie man da noch anders ran
> gehen kann?
>  wäre auf jeden fall dankbar für ne gute idee.
>  
> schöne grüße,
>  grafzahl123


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de