www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Vol. halber Torus Integrieren
Vol. halber Torus Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vol. halber Torus Integrieren: brauche einen kleinen Tip
Status: (Frage) beantwortet Status 
Datum: 11:10 Do 11.06.2009
Autor: joropo

Hallo,
möchte einen"halben" Torus integrieren(Vol), d.h. im Axialschnitt stehen sich 2 Halbkreise mit der runden Seite gegenüber, und der senkrechten Seite nach Außen.Einen Zylinder kann ich int. u. glaube auch hier sind Zylinderkoordinaten zu empfehlen, komme aber nicht weiter.Der Schnitt ist auch als viertelkreise ansehbar, so ist y(x) nur im 1. Quadr.,wie int. ich das über dy, dx, ?welche funktion setze ich ein-und wo? Klar ist, daß d phi über 360° int. wird.  Danke vielmals.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Vol. halber Torus Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Do 11.06.2009
Autor: Al-Chwarizmi


> Hallo,
> möchte einen"halben" Torus integrieren(Vol)(***), d.h. im
> Axialschnitt stehen sich 2 Halbkreise mit der runden Seite
> gegenüber, und der senkrechten Seite nach Außen.Einen
> Zylinder kann ich int. u. glaube auch hier sind
> Zylinderkoordinaten zu empfehlen, komme aber nicht
> weiter.
> ......
> ......


Hallo Elias,

du brauchst keine Zylinderkoordinaten und auch keine
Toruskoordinaten, sondern nur die "gewöhnliche" Formel
für das Volumen eines Rotationskörpers bei Rotation um
die x-Achse. Lege dazu den Axialschnitt entsprechend in
die x-y-Ebene, so dass die Rotationsachse auf die x-Achse
zu liegen kommt. Von den zwei Halbkreisflächen des
Axialschnittes brauchst du nur die eine, z.B. die obere.
Die ist oben durch die Strecke s  [mm] y_s:=R, -r\le x\le [/mm] r und
unten durch den Halbkreis  h: [mm] y_h:=R-...... [/mm]  begrenzt.

Das Volumen deines Rings bekommst du dann als Dif-
ferenz der Rotationsvolumina, welche du mittels der
Funktionen [mm] y_s [/mm] und [mm] y_h [/mm] erhältst.

LG     Al-Chwarizmi


(***) Das Volumen dieses Torus ist übrigens nicht
halb so groß wie das Volumen des entsprechenden
"ganzen" Torus' !





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de